Open XAL Project Organization

1. Introduction

This document proposes a general structure for the Open XAL project. The high-level repository
organization needed to support software versioning is presented in the document Open XAL Versioning.
This document is concerned with the organization of project source code and resources within the
repository. We present a general framework with some additional options, under future revision we
expect to have a final declaration.

Open XAL is partitioned into core components and extension components. The core components
support the basic operation of XAL and are site independent. On the other hand, extension components
are extend the basic features of XAL, are not required to be site independent, and, in fact, may be
deliberately implemented for a specific facility. Figure 1 depicts the basic structure of the core Open

XAL repository, beginning from the repository root node (but not including versioning). Figure 2
suggests a basic convention for site-specific Open XAL repositories.
svnroot » core
- trunk
release
xaldev /\ xaltest
doc | resources build src build -
‘%] \ /\ \
xml |- ext_jars bin jar doc xal bin jar xal
A
......... smf
smf || model || gui || tools |- services
impl
Figure 1: Proposed structure of XAL core repository
1. XAL Core

Here we outline the structure of the Open XAL core project. As mentioned, the XAL core is that
portion of code and resources which is site independent. It forms the core functionality of XAL and

functions uniformly across all installations. The development location begins under the trunk node of
the repository. According to the document Open XAL Versioning, the core development node is thus
svnroot/core/trunk. However, we propose branching from this directory into two main directories in
order to support code testing: one branch for actual project development, and one branch for project
testing. This configuration is shown in Figure 1 where the trunk directory branches into xaldev and
xaltest, the locations for these respective operations. This arrangement allows the test code and
executables to be shipped separately from the project code and executables. Moreover, both locations
are under the trunk directory so the testing code is versioned along with the actual project code which it
tests.

The structure of the project directory, xaldev, is similar to the current XAL repository, with some
notable exceptions. One is the addition of a resources directory where we can store project-related
resources such as XML documents, configuration files, external JAR files, etc. Also shown is the high-level
directory doc where we can include installation instructions, configuration information, primers, or any
other documentation that we deem appropriate to ship with the core. Additionally we have also added
a src directory, where all the source code is located, and is root of Java compilation.

Referring the to src directory of Figure 1, note that the package prefix gov.sns. has been removed
from the current XAL repository. Since the source code here belongs to the core it should reflect the
collaboration rather than an individual institution. Site specific extensions to Open XAL can prefix their
source code as such. With this structure all core XAL source code has the package prefix xal.

The testing branch resembles the development branch. In fact, the source code locations mirror
that of the development side exactly. This layout is deliberate so that the testing code can have the
same Java package name as the source code which it is testing. For example, say | wish to test a new
class MyDevice in the package xal.smf.impl whose source code is located in directory
trunk/xaldev/src/xal/smf/impl. To do so | implement the test class TestMyDevice, this also
belongs to the package xal.smf.impl but with source location in the test branch
trunk/xaltest/src/xal/smf/impl. Such an arrangement makes for easy bookkeeping when designing
and managing test suites.

2. Site Specific Extensions

Software that is specific to a particular facility is maintained under separate branches of the Open
XAL repository as described in Open XAL Versioning. These branches fork directly from the root node
svnroot. Thus, each institution has freedom to organize and develop Open XAL extensions as they see
fit, so long as they do not interfere with the core. However, it may be wise to adopt some conventions
to make it easier for developers to inspect and potentially use code from other institutions. With this in
mind, Figure 2 portrays a proposed template for site specific project organization.

For the sake of example, in Figure 2 the repository structure for the SNS site extension is followed.
Note the versioning mirrors that of the core versioning. The development trunk structure is also similar
to that of the core trunk, with software development supported in the directory dev and software
testing supported in the directory test. Again the src directory is the compilation root and the location
of all source code. The (empty) directory sns lies directly below and, consequently, all Java source code
has a package prefix of sns obviating that the source was developed specifically for use at SNS.

svnroot
T Sites
sns ess spiral frib |-
release trunk
test dev
1.0 1.1 2.0 |- i
M resources build src |
trunk 1.0.0 | e +
sns
Xﬁ xm| etc. |

Figure 2: Suggested site specific repository structure

Other possibilities for tagging code as site would be an “XAL extensions” package prefix such as xalext,
xals, or xalx. For example a new hardware device in use at SNS would then be supported by the class
MyDevice in package sns.xalx.smf.impl.

3. Alternative Java Package Scheme

Figure 3 shows another possible
scheme for organizing the Java
packages and, consequently, the
source branches of the XAL project.
In this case we make explicit the core
source and extension source code \4
explicit by their package names. All
core source code has the package
prefix xal .core while the extension

trunk extensions trunk| trunk

AW \

xaldev dev

core trunk

src

Ny

src

source code has the prefix xalx
followed by the institution identifier.
For example, a core hardware device
supported by the class CoreDevice
would exist in the package
xal .core.smf_impl. A specialized

xal

\

core

xalx

sns

Figure 3: Alternative core/extension package structure

hardware device particular to SNS and supported by the class MyDevice would live in the package

xalx.sns.smf.impl.

4. Document Revision History

Date Author(s) Notes
June 16 Christopher K. Allen* Draft version

1
allenck@ornl.gov

