
XAL ONLINE MODEL ENHANCEMENTS FOR J-PARC COMMISSIONING
AND OPERATION*

C.K. Allen#, ORNL, Oak Ridge, TN 37830 USA
M. Ikegami, KEK, Tsukuba, Ibaraki 305-0801 Japan

H. Sako, G. Shen, H. Ikeda, T.Ohkawa, A. Ueno, JAEA, Tokai, Ibaraki 319-1195 Japan

Abstract
The XAL application development environment has been
installed as a part of the control system for the Japan
Proton Accelerator Research Center (J-PARC) in Tokai,
Japan. XAL was initially developed at the Spallation
Neutron Source (SNS) and has been described at length in
previous conference proceedings [4]. Included in XAL is
an online model for doing quick physics simulations [2].
We outline the upgrades and enhancements to the XAL
online model necessary for accurate simulation of the J-
PARC linac and transport system.

INTRODUCTION
The fundamental tenet of XAL is to provide a

consistent, high-level programming interface, along with
a set of high-level application tools, all of which are
independent of the underlying machine hardware. Control
applications can be built to run at any accelerator site
where XAL is installed. Of course each site typically has
specific needs not supported by XAL and the framework
was designed with this in mind; each institution can make
upgrades to XAL which are then available to all other
users. Recently, many upgrades to the XAL online model
were made to enhance operation in general and with
specific regard to the J-PARC accelerator complex. This
effort includes the addition of new features as well as the
enhancements of existing one. For example, we have
added permanent magnet quadrupoles and additional
space charge capabilities such as off-centered and rotated
beams and bending magnets with space charge.
Additionally, significant architectural refactoring was
performed in order to incorporate the current, and past,
upgrades into a robust framework capable of supporting
future control operations. The architecture and design of
XAL is as important as its function, as such, we also focus
upon the revised architecture and how it supports a
component-based, software engineering approach.
Finally, in addition to this refactoring and enhancement, a
significant effort was devoted toward verification of the
online model. (For a comprehensive summary of this
work see [3]).

SPACE CHARGE EFFECTS MODELING
An exhaustive verification of the XAL online model

operation was performed against the simulation code
Trace3D [5]. Simulation predictions now show exact
agreement, except in the presence of permanent magnet

quadrupole (PMQ) elements. Because this discrepancy is
small and exists without space charge effects, it appears to
be due to modeling differences in the two cases.

A large part of the verification challenge results from
the different “kick” procedures for approximating space
effects. It was necessary to change the XAL space charge
kick procedure in the EnvelopeTracker algorithm class
to exactly that of Trace3D. There are subtleties involved:
Given a step length of size h through an element n, the
XAL online model now steps as Φn(h/2)Φsc(h)Φn(h/2)
where Φn is the transfer matrix for beamline element n
and Φsc is the space-charge kick matrix. Previously, XAL
stepped as Φsc(h/2)Φn(h)Φsc(h/2), motivated from the fact
that Φsc is sensitive to changes in beam size. Both
procedures are second-order accurate in h by the
Campbell-Baker-Hausdorff theorem. Thus, the remainder
term is of order O(h3), however, being a nonlinear system
(from Φsc) the errors accumulate, especially after 300
meters. To properly compare the codes you must simulate
the dynamics exactly. (The differences are then indicative
of the limitations in the underlying technique itself.)
Another interesting fact is that Trace3D initially steps a
distance h/2 through an element n (without space charge)
then applies the space-charge momentum kick for length
h, according to the scheme Φn(h/2)Φsc(h)Φn(h/2). To
finish the iteration procedure, the beam is again advanced
a distance h/2 (without space charge). Of course the next
iteration again steps the beam a distance h/2 within the
element n. However, since Φn(h/2)Φn(h/2) = Φn(h) for any
n except a PMQ, it is essentially just a leap-frog technique
after that point. It is necessary to step this initial offset to
obtain exact comparison with Trace3D.

The method used to compute the space charge matrix
Φsc(h) within XAL is more general then that of Trace3D.
This follows from the use of homogeneous phase space
coordinates within XAL. However, it also complicates the
space charge calculations. Several errors were discovered
in the space charge mechanism during the course of this
analysis. For example, a Lorentz transformation was
missing and there was an error in the treatment of off-
centered beams. Moreover, the original code would work
only for beams that were tilted in one phase plane (which
would cover most situations). A general solution was
developed involving Jacobi decomposition of the
covariance matrix. Further details are described in [1].

Finally, several physical and mathematical constants
differed slightly in the two codes. These values were
located, coalesced, and corrected. The actual corrections
were made to Trace3D, since the modified values were
more accurate than the original values.

*Work supported by KEK under a foreign visiting researcher grant.
#allenck@ornl.gov

ROAA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Process Tuning, Modeling, Automation, and Synchronization

494

PROBE HIERARCHY REFACTORING
The representation of bunched beams was completely

refactored. Previously there were many questionable
implementations resulting in a very brittle situation. For
example, two parameters, beam current I and bunch
charge Q originated in the BeamProbe hierarchy. From
these you can calculate the bunch frequency f = I/Q (a
method existed). This quantity was not the machine
frequency; it could be different, for example, when not
filling every RF bucket. However, subsequently a third
attribute, frequency f, had been added to the BeamProbe
hierarchy. We were then left with a dangerous
inconsistency. Worse yet, there were many instances
where the frequency was simply hard-coded into
applications and, worse further, into the XAL framework
itself. In retrospect the bunch frequency and beam current
should have been fundamental attributes of the
BeamProbe class (parameters most familiar to the beam
physicist), from which bunch charge would be computed.
The architecture was changed accordingly.

The most dangerous condition found in the Probe
component was caused by the redundant state information
in the EnvelopeProbe (a BeamProbe child). The
primary attribute of a EnvelopeProbe is the covariance
matrix, the matrix of first and second order moments of
the beam distribution. However, a set of Twiss parameter
attributes had also been added to the class. Not only did
we have the potential for inconsistency (the covariance
matrix is a Twiss parameter generalization), but we had
actual inconsistencies within the implementation
itself. Particularly, there was a dangerous situation
relating to inheritance and the virtual method nature of
Java. When calling a method to return a Twiss parameter
computation from the covariance matrix you would
actually get the local Twiss parameters of the probe.

All state information was moved out of the BeamProbe
class, probably an architectural error in the original
implementation. Other than bunch frequency and current,
no state information belongs there. In order to deal with
the redundant state information another probe class was
implemented having Twiss parameters as the primary
state variables (see next section). Implementing new
probe classes is not as straightforward as it could be
(refactoring would be appropriate), but it is not difficult.

TWISS PARAMETER SIMULATION
Support for the direct simulation of Twiss parameters

for bunched beams was added to the XAL framework.
This was done to support backward capability for the
EnvelopeProbe class, where that simulation capability
was deprecated. Creation of a separate simulation
mechanism for Twiss parameters required the
implementation of several new classes, as well as support
for these classes within the XAL persistent data
mechanism. The main class for beam representation is
TwissProbe while the simulation algorithm is
TwissTracker. Fundamental state variables of the
TwissProbe class are the centroid location, the response

matrix, and Twiss parameters representing the beam
ellipses in the three phase planes. Note that because of the
nature of this state information the simulation will be
inaccurate in the presences of bending magnets,
misalignments, or any other elements coupling the phase
planes. Space charge may be included in a TwissProbe
simulation; however, it, too, is accurate only without
phase plane coupling.

ALGORITHM REFACTORING
The algorithm class hierarchy of the XAL online model

was refactored to add additional software capabilities and
increase the robustness of the code. In addition, two
classes used for simulating the RMS behavior of bunched
beams were substantially refactored. These classes,
EnvelopeTracker and EnvTrackerAdapt, contain
algorithms for advancing EnvelopeProbe objects
through machine elements. Also, several bugs were found
in the EnvTrackerAdapt class, the Twiss parameters
would not be computed correctly in some instances, and
the phase advance also appeared to be incorrect. Finally,
new documentation to the code (Javadoc) was added to
explain the new architecture.

For users of the online model the following summarizes
the major refactoring: 1) The AlgorithmFactory class
is now deprecated and replaced by an implementation
using Java reflection, one only needs to specify the Java
class type. 2) The EditContext loading mechanism was
moved down to the Tracker base class and deprecated in
its child class TrackerAdaptive. Consequently, any
algorithm and, thus, probe type can use the
model_params automated technique for retrieving its
parameters. This feature is still only implemented for the
EnvTrackerAdapt class. 3) The TrackerAdaptive
middle class was removed and all it functionality placed
into the Tracker base class.

RF GAP MODELING ELEMENT
Considerable enhancements to the XAL RF gap

modeling element, IdealRfGap, were made.
Furthermore, major refactoring efforts were devoted
toward improving robustness and clarity (including
significant commenting of the underlying simulation
procedure), as well as the emittance growth mechanism
described below.

Previously at J-PARC the ability to model emittance
growth due to phase spread through RF gap elements was
added to XAL. The modeling technique implemented was
the same as that used in Trace3D. The operation of this
feature was verified for the transverse phase planes.
However, it was discovered that the model for
longitudinal phase-plane emittance growth was invalid for
beam bunches with large phase spread. Since this is
exactly the case for the J-PARC transport line to the RCS,
such a modeling shortfall is of significant consequence.
A more appropriate model for longitudinal emittance

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA ROAA04

Process Tuning, Modeling, Automation, and Synchronization

495

growth was developed; the details are to appear in a later
publication.

Briefly, the form of the emittance growth function is
G(φ,Δφ) = S(Δφ) – T(Δφ)sin2φ where φ is the RF gap
phase, Δφ is the bunch phase spread, and S and T are
bounded real functions with limiting values of ½ and 0,
respectively. Thus, we can get an appreciation for the
maximum emittance growth as a function of Δφ by
inspecting the difference S(Δφ) – T(Δφ). We find that, in
general S(Δφ) – T(Δφ) is small for small Δφ, then it
increases toward a limiting value where emittance growth
will saturate regardless of the value φ. This effect is
shown in Figure 1 for several different beam distributions.

Trace3D correctly captures this effect in the transverse
planes. However, it uses a two-term approximation of
G(φ,Δφ) in Δφ in the longitudinal case and, thus, this
saturation effect is not captured. Consequently emittance
can grow unbounded as phase spread increases. This
condition can cause the beam to growth longitudinally
because of the artificially high temperature.

This emittance-growth mechanism was implemented in
the J-PARC XAL framework. It was added to the
Algorithm component of the Element/Algorithm/Probe
architecture, which is its most natural setting.
Additionally, emittance growth was made an optional
feature.

BENDING MAGNETS
The capability of simulating space charge effects within

bending magnets was added to the XAL online model.
Model elements require a specific architecture to support
space charge calculations. It was necessary to implement
a separate object for bending dipole magnets according to
this architecture.

Previously there were two elements in XAL which
modeled bending dipoles. ThickDipole modeled a
bending dipole and correctly handles the dynamics when
driving the dipole magnet off the design field strength.
However it does not conform to the XAL architecture
and, consequently, cannot handle space charge correctly.
The class IdealMagWedgeDipole supported the space
charge mechanism of the XAL online model, however, it
did not treat the full dynamics due to variations in field
strength off the design value; it only considered changes
in quadrupole focusing.

The architecture of IdealMagWedgeDipole is shown
in the UML class diagram Figure 2. It is a composite of

three separate objects, the entrance pole face, the magnet
body (an IdealMagSectorDipole object), and the exit
pole face. A new object, IdealMagWedgeDipole2 was
created which combines the aspects of the previous two
classes. As shown in the figure, the magnet body was
replaced with IdealMagSectorDipole2 which contains
the dynamics in the original ThickDipole class. In other
words, the physics of ThickDipole was implemented
into the architecture of IdealMagWedgeDipole. Also
shown in the figure is the class IdealMagDipoleFace2,
a refactored and more robust version of its predecessor.

Another refactoring effort worth noting is the removal
of an SNS stripper foil exception. No stripper foils are
assumed in the dipole, as was the case previously if the
design curvature and the particle curvature had differing
signs. A more robust design should be implemented to
handle this situation if necessary. This would probably
entail the creation of a new stripper-foil class which
would change the charge property of the beam (Probe)
object. The previous implementation had the potential to
create erroneous and very confusing results for those who
were not aware of this exceptional processing.

REFERENCES
[1] C.K. Allen, K. Furukawa, M. Ikegami, and K. Oide,

“Adaptive Three-Dimensional RMS Envelope
Simulation in the SAD Accelerator Modeling
Environment”, LINAC06 Conference Proceedings,
Knoxville, TN, June, 2006.

[2] C.K. Allen, C.A. McChesney, C.P. Chu, J.D.
Galambos, W.-D. Klotz, T.A. Pelaia, A. Shislo, “A
Novel Online Simulator for Applications Requiring a
Model Reference”, ICALEPCS 2003 Conference
Proceedings, Kyongju, Korea, October 13-17, 2003.

[3] C.K. Allen, “Foreign Visiting Researcher Project
Summary Report: Accelerator Controls and
Simulation”, KEK internal document.

[4] C.P. Chu, S. Cousineau, J.D. Galambos, J. Holmes,
T.A. Pelaia, A. Shishlo, Y. Zhang, C.K. Allen, “SNS
Application Programming Infrastructure and Physics
Applications”, APAC07, Indore, India, Jan 29 - Feb
2, 2007.

[5] K.R. Crandall and D.P. Rusthoi, “TRACE 3D
Documentation”, LANL Report LA-UR-97-886.

Figure 1: Longitudinal emittance growth saturation.

IdealMagWedgeDipole2

IdealMagDipoleFace2 IdealMagDipoleFace2

IdealMagSectorDipole2

ThickElementThinElement ThinElement
Figure 2: bending dipole architecture.

ROAA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Process Tuning, Modeling, Automation, and Synchronization

496

