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Abstract 
The XAL application development environment has been 
installed as a part of the control system for the Japan 
Proton Accelerator Research Center (J-PARC) in Tokai, 
Japan. XAL was initially developed at the Spallation 
Neutron Source (SNS) and has been described at length in 
previous conference proceedings [4]. Included in XAL is 
an online model for doing quick physics simulations [2]. 
We outline the upgrades and enhancements to the XAL 
online model necessary for accurate simulation of the J-
PARC linac and transport system.   

INTRODUCTION 
The fundamental tenet of XAL is to provide a 

consistent, high-level programming interface, along with 
a set of high-level application tools, all of which are 
independent of the underlying machine hardware. Control 
applications can be built to run at any accelerator site 
where XAL is installed. Of course each site typically has 
specific needs not supported by XAL and the framework 
was designed with this in mind; each institution can make 
upgrades to XAL which are then available to all other 
users. Recently, many upgrades to the XAL online model 
were made to enhance operation in general and with 
specific regard to the J-PARC accelerator complex.  This 
effort includes the addition of new features as well as the 
enhancements of existing one. For example, we have 
added permanent magnet quadrupoles and additional 
space charge capabilities such as off-centered and rotated 
beams and bending magnets with space charge. 
Additionally, significant architectural refactoring was 
performed in order to incorporate the current, and past, 
upgrades into a robust framework capable of supporting 
future control operations.  The architecture and design of 
XAL is as important as its function, as such, we also focus 
upon the revised architecture and how it supports a 
component-based, software engineering approach.  
Finally, in addition to this refactoring and enhancement, a 
significant effort was devoted toward verification of the 
online model. (For a comprehensive summary of this 
work see [3]).  

SPACE CHARGE EFFECTS MODELING 
An exhaustive verification of the XAL online model 

operation was performed against the simulation code 
Trace3D [5]. Simulation predictions now show exact 
agreement, except in the presence of permanent magnet 

quadrupole (PMQ) elements. Because this discrepancy is 
small and exists without space charge effects, it appears to 
be due to modeling differences in the two cases.  

A large part of the verification challenge results from 
the different “kick” procedures for approximating space 
effects. It was necessary to change the XAL space charge 
kick procedure in the EnvelopeTracker algorithm class 
to exactly that of Trace3D.  There are subtleties involved: 
Given a step length of size h through an element n, the 
XAL online model now steps as Φn(h/2)Φsc(h)Φn(h/2) 
where Φn is the transfer matrix for beamline element n 
and Φsc is the space-charge kick matrix. Previously, XAL 
stepped as Φsc(h/2)Φn(h)Φsc(h/2), motivated from the fact 
that Φsc is sensitive to changes in beam size. Both 
procedures are second-order accurate in h by the 
Campbell-Baker-Hausdorff theorem. Thus, the remainder 
term is of order O(h3), however, being a nonlinear system 
(from Φsc) the errors accumulate, especially after 300 
meters. To properly compare the codes you must simulate 
the dynamics exactly.  (The differences are then indicative 
of the limitations in the underlying technique itself.) 
Another interesting fact is that Trace3D initially steps a 
distance h/2 through an element n (without space charge) 
then applies the space-charge momentum kick for length 
h, according to the scheme Φn(h/2)Φsc(h)Φn(h/2). To 
finish the iteration procedure, the beam is again advanced 
a distance h/2 (without space charge). Of course the next 
iteration again steps the beam a distance h/2 within the 
element n. However, since Φn(h/2)Φn(h/2) = Φn(h) for any 
n except a PMQ, it is essentially just a leap-frog technique 
after that point.  It is necessary to step this initial offset to 
obtain exact comparison with Trace3D. 

The method used to compute the space charge matrix 
Φsc(h) within XAL is more general then that of Trace3D. 
This follows from the use of homogeneous phase space 
coordinates within XAL. However, it also complicates the 
space charge calculations. Several errors were discovered 
in the space charge mechanism during the course of this 
analysis. For example, a Lorentz transformation was 
missing and there was an error in the treatment of off-
centered beams. Moreover, the original code would work 
only for beams that were tilted in one phase plane (which 
would cover most situations). A general solution was 
developed involving Jacobi decomposition of the 
covariance matrix. Further details are described in [1]. 

Finally, several physical and mathematical constants 
differed slightly in the two codes. These values were 
located, coalesced, and corrected. The actual corrections 
were made to Trace3D, since the modified values were 
more accurate than the original values. 
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PROBE HIERARCHY REFACTORING 
The representation of bunched beams was completely 

refactored. Previously there were many questionable 
implementations resulting in a very brittle situation. For 
example, two parameters, beam current I and bunch 
charge Q originated in the BeamProbe hierarchy. From 
these you can calculate the bunch frequency f = I/Q (a 
method existed). This quantity was not the machine 
frequency; it could be different, for example, when not 
filling every RF bucket. However, subsequently a third 
attribute, frequency f, had been added to the BeamProbe 
hierarchy. We were then left with a dangerous 
inconsistency. Worse yet, there were many instances 
where the frequency was simply hard-coded into 
applications and, worse further, into the XAL framework 
itself.  In retrospect the bunch frequency and beam current 
should have been fundamental attributes of the 
BeamProbe class (parameters most familiar to the beam 
physicist), from which bunch charge would be computed. 
The architecture was changed accordingly.   

The most dangerous condition found in the Probe 
component was caused by the redundant state information 
in the EnvelopeProbe (a BeamProbe child). The 
primary attribute of a EnvelopeProbe is the covariance 
matrix, the matrix of first and second order moments of 
the beam distribution.  However, a set of Twiss parameter 
attributes had also been added to the class. Not only did 
we have the potential for inconsistency (the covariance 
matrix is a Twiss parameter generalization), but we had 
actual inconsistencies within the implementation 
itself. Particularly, there was a dangerous situation 
relating to inheritance and the virtual method nature of 
Java. When calling a method to return a Twiss parameter 
computation from the covariance matrix you would 
actually get the local Twiss parameters of the probe. 

All state information was moved out of the BeamProbe 
class, probably an architectural error in the original 
implementation. Other than bunch frequency and current, 
no state information belongs there. In order to deal with 
the redundant state information another probe class was 
implemented having Twiss parameters as the primary 
state variables (see next section). Implementing new 
probe classes is not as straightforward as it could be 
(refactoring would be appropriate), but it is not difficult.  

TWISS PARAMETER SIMULATION 
Support for the direct simulation of Twiss parameters 

for bunched beams was added to the XAL framework. 
This was done to support backward capability for the 
EnvelopeProbe class, where that simulation capability 
was deprecated. Creation of a separate simulation 
mechanism for Twiss parameters required the 
implementation of several new classes, as well as support 
for these classes within the XAL persistent data 
mechanism. The main class for beam representation is 
TwissProbe while the simulation algorithm is 
TwissTracker. Fundamental state variables of the 
TwissProbe class are the centroid location, the response 

matrix, and Twiss parameters representing the beam 
ellipses in the three phase planes. Note that because of the 
nature of this state information the simulation will be 
inaccurate in the presences of bending magnets, 
misalignments, or any other elements coupling the phase 
planes. Space charge may be included in a TwissProbe 
simulation; however, it, too, is accurate only without 
phase plane coupling. 

ALGORITHM REFACTORING 
The algorithm class hierarchy of the XAL online model 

was refactored to add additional software capabilities and 
increase the robustness of the code. In addition, two 
classes used for simulating the RMS behavior of bunched 
beams were substantially refactored. These classes, 
EnvelopeTracker and EnvTrackerAdapt, contain 
algorithms for advancing EnvelopeProbe objects 
through machine elements. Also, several bugs were found 
in the EnvTrackerAdapt class, the Twiss parameters 
would not be computed correctly in some instances, and 
the phase advance also appeared to be incorrect. Finally, 
new documentation to the code (Javadoc) was added to 
explain the new architecture. 

For users of the online model the following summarizes 
the major refactoring: 1) The AlgorithmFactory class 
is now deprecated and replaced by an implementation 
using Java reflection, one only needs to specify the Java 
class type. 2) The EditContext loading mechanism was 
moved down to the Tracker base class and deprecated in 
its child class TrackerAdaptive. Consequently, any 
algorithm and, thus, probe type can use the 
model_params automated technique for retrieving its 
parameters.   This feature is still only implemented for the 
EnvTrackerAdapt class. 3) The TrackerAdaptive 
middle class was removed and all it functionality placed 
into the Tracker base class. 

RF GAP MODELING ELEMENT 
Considerable enhancements to the XAL RF gap 

modeling element, IdealRfGap, were made. 
Furthermore, major refactoring efforts were devoted 
toward improving robustness and clarity (including 
significant commenting of the underlying simulation 
procedure), as well as the emittance growth mechanism 
described below. 

Previously at J-PARC the ability to model emittance 
growth due to phase spread through RF gap elements was 
added to XAL. The modeling technique implemented was 
the same as that used in Trace3D. The operation of this 
feature was verified for the transverse phase planes.  
However, it was discovered that the model for 
longitudinal phase-plane emittance growth was invalid for 
beam bunches with large phase spread. Since this is 
exactly the case for the J-PARC transport line to the RCS, 
such a modeling shortfall is of significant consequence.  
A more appropriate model for longitudinal emittance 
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growth was developed; the details are to appear in a later 
publication. 

Briefly, the form of the emittance growth function is 
G(φ,Δφ) = S(Δφ) – T(Δφ)sin2φ where φ is the RF gap 
phase, Δφ is the bunch phase spread, and S and T are 
bounded real functions with limiting values of ½ and 0, 
respectively.  Thus, we can get an appreciation for the 
maximum emittance growth as a function of Δφ by 
inspecting the difference S(Δφ) – T(Δφ). We find that, in 
general S(Δφ) – T(Δφ) is small for small Δφ, then it 
increases toward a limiting value where emittance growth 
will saturate regardless of the value φ.  This effect is 
shown in Figure 1 for several different beam distributions. 

Trace3D correctly captures this effect in the transverse 
planes.  However, it uses a two-term approximation of 
G(φ,Δφ) in Δφ in the longitudinal case and, thus, this 
saturation effect is not captured.  Consequently emittance 
can grow unbounded as phase spread increases.  This 
condition can cause the beam to growth longitudinally 
because of the artificially high temperature.  

This emittance-growth mechanism was implemented in 
the J-PARC XAL framework. It was added to the 
Algorithm component of the Element/Algorithm/Probe 
architecture, which is its most natural setting. 
Additionally, emittance growth was made an optional 
feature.  

BENDING MAGNETS  
The capability of simulating space charge effects within 

bending magnets was added to the XAL online model. 
Model elements require a specific architecture to support 
space charge calculations.  It was necessary to implement 
a separate object for bending dipole magnets according to 
this architecture.   

Previously there were two elements in XAL which 
modeled bending dipoles. ThickDipole modeled a 
bending dipole and correctly handles the dynamics when 
driving the dipole magnet off the design field strength. 
However it does not conform to the XAL architecture 
and, consequently, cannot handle space charge correctly. 
The class IdealMagWedgeDipole supported the space 
charge mechanism of the XAL online model, however, it 
did not treat the full dynamics due to variations in field 
strength off the design value; it only considered changes 
in quadrupole focusing. 

The architecture of IdealMagWedgeDipole is shown 
in the UML class diagram Figure 2. It is a composite of 

three separate objects, the entrance pole face, the magnet 
body (an IdealMagSectorDipole object), and the exit 
pole face. A new object, IdealMagWedgeDipole2 was 
created which combines the aspects of the previous two 
classes. As shown in the figure, the magnet body was 
replaced with IdealMagSectorDipole2 which contains 
the dynamics in the original ThickDipole class. In other 
words, the physics of ThickDipole was implemented 
into the architecture of IdealMagWedgeDipole.  Also 
shown in the figure is the class IdealMagDipoleFace2, 
a refactored and more robust version of its predecessor.  

Another refactoring effort worth noting is the removal 
of an SNS stripper foil exception. No stripper foils are 
assumed in the dipole, as was the case previously if the 
design curvature and the particle curvature had differing 
signs. A more robust design should be implemented to 
handle this situation if necessary. This would probably 
entail the creation of a new stripper-foil class which 
would change the charge property of the beam (Probe) 
object. The previous implementation had the potential to 
create erroneous and very confusing results for those who 
were not aware of this exceptional processing. 
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Figure 1: Longitudinal emittance growth saturation. 
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Figure 2: bending dipole architecture. 
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