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1. INTRODUCTION 
A convenient way to describe particle beam behavior is through the use of statistics.  For instance, 

instead of a full multiple-particle simulation we can propagate the statistical properties of the beam down 
the beamline, such as its various statistical moments.  Of course such an approach does not provide as 
much information as a multiple-particle simulation, however, it is computationally much less expensive.  
The approach is that taken by the simulation codes TRANSPORT [4] and TRACE3D [7].  The current note 
describes this type of simulation technique in some detail, in particular, the beam physics background, 
computation of the self-force effects on the dynamics (i.e., space charge effects), and numerical 
approaches.   

It is our intention to describe in some detail the theory and technique for simulation of particle beam 
envelopes.  We hope that this unified presentation will serve as a collective documentation for such 
techniques that are already in common practice.  By fully documenting both the theory and numerical 
techniques one can more readily develop extensions to the theory and techniques and draw conclusions 
toward the validity of the resulting simulations.  For example, we could extend the theory here to include 
noise from machine errors, or use the theory included here to determine which regimes the simulations are 
most accurate.  Because our interests are primarily in the control and automation of accelerator systems, it 
is important to us that we have a clear understanding of the simulation techniques being employed to 
develop robust control applications.  The techniques presented here are fast.  Thus, not only are they useful 
for off-line accelerator system design, they are also valuable for presenting on-line model references for 
developing control applications. 

Although we cover the theory and technique of beam envelope simulation in detail, we mention 
nothing about how one might actually implement such a simulation engine.  In a companion article we 
present a modern software architecture for performing these simulations [18].  This architecture has already 
been implemented and is in current use, embedded into the high-level control system for the Spallation 
Neutron Source (SNS) accelerator. 

1.1. Overview 
We begin with the equations of motion for single particle trajectory under Lorentz forces.  These 

equations are tailored to beam physics by using the path length along the design trajectory as the 
independent variable, rather than time.  By employing Liouville's theorem we find it possible to derive 
evolution equations for the beam ensemble's moments from the equations for single particle motion.  There 
are two unresolved terms in these equations, both determining the effects of the beam's self fields on the 
moment dynamics.  Specifically, they are the cross-moments of the self electric field and the phase 
coordinates.  If we assume that the beam has ellipsoidal symmetry in configuration space, it is possible to 
compute one of these moments analytically in terms of elliptic integrals (the moment involving the spatial 
coordinate).  Upon computing this moment we find that it depends only weakly on the actual profile of the 
ellipsoidal distribution.  Acknowledging this fact we typically model all laboratory beams with an 
equivalent uniform beam having the same second moments; the uniform beam is preferred since it has 
well-defined boundaries.  From there we take two different approaches in the description of the statistical 
evolution of the beam.   

From the moment equations we can derive a convenient set of equations that describe the behavior of 
the rms beam envelopes (assuming a centered beam).  We avoid the remaining unknown field moment by 
introducing the definition of rms emittance in the equation set.  By doing so, however, we implicitly make 
the assumption that the rms emittance is either constant or it is a function whose values are known a priori.  
This assumption is usually not too restrictive, since it is known that rms emittances are invariants of the 
motion if all forces on the beam are linear.  The resulting set of equations for rms envelopes can also be 
rewritten for the equivalent uniform beam, and is usually seen that way in the literature.  They form a 
convenient closed set of equations for studying beam dynamics.  However, as pointed out they cannot be 
used to study nonlinear effects acting on the beam. 

The alternate approach to developing a description of the beam's statistical evolution is through the use 
of transfer matrices.  While the previous approach results in a set of coupled ordinary equations that are 
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Figure 1: design trajectory and coordinate system 

continuous in nature, this technique is more of a discrete approach.  Generally, the continuous 
representation is most convenient for analytic study while the discrete representation is well suited for 
computer simulation.  The transfer matrix technique is based upon the observation that whenever all forces 
on a particle are linear, multiplying the particle's coordinate vector by a matrix can represent the action of 
any beamline element.  This matrix is determined by the properties of the element and is called the transfer 
matrix for the element.  If we represent all the second-order moments of the beam by a symmetric matrix, 
then the effects of the element on these statistical quantities can be determined by a transpose conjugation 
with the transfer matrix.  This technique is easy to implement on a computer.  A transfer matrix can also be 
used to model the action the beam's space charge if we use a linear fit to the self electric field of the beam.  
We do this by employing a weighted linear regression, where the weighting factor is the beam distribution.  
This gives us a fit that is more accurate in regions of higher beam density.  It turns out that this field 
approximation also conforms to the assumption of constant rms emittance, as done in the previous 
description of the beam dynamics.  So we essentially have an equivalent representation as before, only the 
beam is propagated discretely with transfer matrices. 

1.2. Outline 
In Section 2 we review the basic physics background necessary for this analysis.  Mostly this entails 

placing the common physical concepts in the context of accelerator physics.  In particular we cover the 
design trajectory, phase space, and the equations of motion for an accelerator system.  Section 3 introduces 
the basic statistical concepts on which we rely for our simulation technique.  There we show how to 
transform the equations of motion for individual particles into evolution equations for statistical properties 
of the beam.  Section 4 describes quantities and parameters particular to particle beam physics.  The most 
important of these concepts is probably the rms envelopes and the Courant-Snyder parameters for 
describing the phase space distribution of the beam.  We also cover the mean value vector and the 
covariance matrix, convenient methods for representing the statistical properties of the beam.  Ellipsoidal 
beams are treated in Section 5, that is, beam distributions having ellipsoidal symmetry.  Specifically, we 
compute the space charge effects for ellipsoidal beams.  We see that it is possible to determine the effects 
of the self-forces analytically in terms of elliptic integrals for distributions having ellipsoidal symmetry in 
configuration space.  Sections 6 and 7 cover simulation techniques for bunched beams with ellipsoidal 
symmetry.  Section 6 treats the envelope equations for bunched beams where we develop the coupled set of 
ordinary differential equations describing the evolution of the equivalent uniform beam.  Section 7 presents 
the transfer matrix approach to bunched beam envelope simulation.  This technique, although somewhat 
less obvious, is more suited to numerical simulation and is also more general than the envelope equation 
approach as it can treat coupling between the phase planes.  Finally we conclude with Section 8 and present 
some transfer matrices for common beamline elements in Appendix A. 

2. PHYSICS BACKGROUND 
Here we present the basic physics 

background for our analysis.  
Ultimately, we develop the equations 
of motion for individual beam particles 
and we do so in a form suitable for 
beam physics.  We also touch upon the 
various unit conversions and 
conventions used in the beam physics 
literature. 

2.1. The Design Trajectory  
We shall assume a beam transport 

or accelerator system that has a 
specified design trajectory.  This 
configuration is shown in Figure 1.  
The distance along this design 
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trajectory is given by the independent variable s.  There also exists the synchronous particle, which has a 
specified design velocity v(s) at each point s on the design trajectory.  The relative velocity β=v/c and 
relativistic parameter γ=1/(1-β2)1/2 are always given with respect to this design velocity, unless otherwise 
noted.  With respect to the synchronous particle, we construct a system of coordinates (x,y,z), that is, the 
synchronous particle is at the origin.  The coordinates x,y,z represent displacements from the synchronous 
particle in the x, y, z directions, respectively.  Locally, the z-coordinate is always aligned with the design 
trajectory.  Specifically, the tangent vector of the design trajectory always points in the z-direction.  Thus, 
the xy-plane represents the transverse plane while the z-direction is the longitudinal direction of beam 
propagation (in a local sense).  Note that the coordinates (x,y,z) are not the inertial frame of the beam, they 
are laboratory coordinates that follow the beam. 

2.2. Phase Space 
We form the phase space (or state space) of the particle by considering the momenta (x',y',z') 

normalized with respect to the synchronous particle.  Let p(s)=γmv(s) represent the mechanical momentum 
magnitude of the synchronous particle.  Then the x and y plane relative momentum x' and y' are given by 

(1) 
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where the over dot denotes differentiation with respect to time.  For the z plane the situation is different 
since the coordinate z is defined to be the difference in longitudinal position from the synchronous particle, 
which is traveling at velocity v.  Therefore,  
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where Δv is the difference in velocity v of the synchronous particle, Δβ is the difference in normalized 
velocity, Δp is the difference in longitudinal momentum p of the synchronous particle, and the last equality 
comes from relativistic mechanics (see below).   

The complete set of phase space coordinates for a particle, including both position and normalized 
momentum, at location s is given by (x,x',y,y',z,z';s).  This coordinate space, specifically with the 
normalized momenta x', y', and z', is also commonly called trace space in the literature.  For conciseness, it 
is convenient to denote these points in phase space by a vector quantity, usually z.  However, referring to 
the following section, we reserve z to denote points in phase space charted with homogeneous coordinates. 

2.3. Homogeneous Coordinates 
Points in phase space are represented with the coordinate vector z.  It represents the position and 

momentum of a particle at a particular position s along the beamline.  For reasons that become clear later, 
we work with homogeneous phase space coordinates in the space ℜ6×{1}.  This space is isomorphic to the 
usual space of phase coordinates ℜ6, but contains an additional, constant, coordinate.  We have 

(3) }1{)1,,,,,,( 6 ×ℜ∈′′′≡ zzyyxxz , 

where x,y,z are the coordinates in configuration space and the primes indicate differentiation with respect to 
the path length parameter s (e.g., y’=dy(s)/ds).   

Homogeneous coordinates are a mathematical technique for parameterizing the projective spaces Pn.  
They are also widely used in computer graphics for three-dimensional rendering, since translation, rotation, 
and scaling can all be performed by matrix multiplication [20].  The later fact is primary reason that we 
employ homogeneous coordinates to parameterize phase space (for example, we may represent the action 
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of a steering dipole magnet as a matrix operation on homogeneous phase space coordinates).  Also, the 
correlation matrix of phase space coordinate moments will contain all moments up to second order, rather 
than just monomial moments of second order (see Section 4.4). 

The remainder of this section constructs the covering of the real projective spaces by homogeneous 
coordinates; it is not relevant to any material in the sequel.  The n-dimensional real projective space ℜPn 
can be described as a set equivalence relations [x0, …, xn] on ℜn+1 where [x0, …, xn]~[wx0, …, wxn] for all 
real w≠0, and such that not all the xi are zero.  Thus, the points of the project space ℜPn are seen to be the 
lines in ℜn+1 that pass through the origin.  These equivalence classes are known as the homogeneous 
coordinates of the projective spaces.  (Another equivalent description of the projective space ℜPn is found 
by identifying all the antipodal points of the sphere Sn.)   

The projective space ℜPn can be considered a differentiable manifold with the atlas consisting of n+1 
charts {Ui,φi}i=0

n where Ui is the set of equivalence relations [x0, …, xn] such that xi≠0, and φi:Ui → ℜn is 
the bijective coordinate map  

(4) )/,ˆ,,/(],,,[: 00 iniinii xxxxxxxx KKaKKφ . 

The caret indicates omission of the coordinate.  Note that the union ∪i=0
nUi covers all of ℜPn.  More aptly, 

note that the coordinates of the i=n+1 chart consist of the following equivalence relations: 

(5) n
nnni xxxxxx ℜ∈∀= −−−

− ),(]1,,[),,( 101010
1 KKKφ . 

Thus, Ui is seen to be the set of all lines in ℜn+1 passing through the plane {(x0,…,xn)∈ℜn+1⏐xn=1}.  We use 
the homogeneous coordinates of this chart. 

2.4. The Longitudinal Phase Plane  
Since the z phase plane has several different descriptions in the literature, we shall consider it in more 

detail.  There are several different coordinate systems commonly used to describe this phase plane.  
Because we are considering position and momentum in the direction of propagation it is necessary to 
consider relativistic effects when converting between these descriptions.  The following equations relate 
differential changes in common relativistic parameters: 

(6) 
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where W is the kinetic energy of the particle given by (γ-1)mc2. 

Commonly used coordinates used in lieu of z are Δφ and Δt.  The coordinate Δφ is the RF phase 
difference from the synchronous particle, while Δt is the difference in arrival time from the synchronous 
particle.  To convert from Δφ in degrees, or Δt in seconds, to z in meters use the following formulae: 

(7) 
,)1()(
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360360
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where T is the period of the RF and λ is the free-space wavelength of the RF.  Note that negative values of 
Δφ indicate a phase difference ahead of the synchronous particle (a phase lead) while negative values for Δt 
indicate arrival times before the synchronous particle.   

Coordinates that alternately describe z' are Δp/p and ΔW.  The quantity Δp is the difference in 
momentum from the synchronous particle so that Δp/p is the normalized difference in momentum.  
Likewise, ΔW is the difference in kinetic energy from the synchronous particle.  To convert from Δp/p in 
radians or ΔW in electron volts (Joules) to z' in radians use the relation 
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where W is the beam's kinetic energy, and we have used the fact that 

(9) 
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These relations follow from the facts that pc = (E2 − ER
2)1/2, Δp = mcΔ(βγ) = γ3mcΔβ = pγ2(Δβ/β) and 

ΔW=mc2Δγ=β2γmc2(Δp/p), where E = γmc2 is the total energy and ER = mc2 is the rest energy. 

2.5. Equations of Motion 
Newton's second law gives the equations of motion for individual particles of the beam.  We shall 

make all our calculations in the laboratory frame.  Recall that the coordinates (x,y,z) are actually the 
displacements from the synchronous particle on the design trajectory.  In our case the familiar F=dp/dt 
appears as 

(10) 

ds
dzyxmcmc
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γβγβ
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where F is the force on a particle, γ is the relativistic factor, m is the particle mass, c is the speed of light, 
β≡v/c where v is velocity of the synchronous particle along s, r≡(x,y,s+z) is the position vector, and the 
primes indicate differentiation with respect to s.  To derive the second line of the above note that the 
velocity vector can be expressed as v=βc(x',y',z'+1).  The second term of that equation is nonzero only 
when particles are accelerated.  Many times we can assume that the quantity γ' is negligible, for example in 
transport systems or between RF gaps. 

The Lorentz force law containing all the electromagnetic fields gives the forces F on a beam particle.  
We decompose the force vector F into the superposition of the applied external forces Fa and the self-forces 
Fs caused by the electromagnetic fields of the beam itself.  The applied forces are assumed to be linear by 
design, since it is known that nonlinear forces can degrade beam quality.  Thus,  

(11) rΚFa ⋅−= )(s , 

where K≡(κx(s),κy(s),κz(s)) represents the action of external beamline components.  For example, the 
focusing force in the x-direction applied by a magnetic quadrupole lens is given by 

(12) x
x

B
cqF y

xa ∂

∂
−=

)0(
, β , 

where By is the y-directed magnetic field.  Thus, κx=qβc[∂By/∂x]. 

The self-forces Fs are the electromagnetic fields produced by the beam itself.  We have 

(13) ),(][),( scqsq rBarrΕF szss ×+′+= β , 

where Es is the self electric field, Bs is the self magnetic field, and az is the unit vector in the direction of 
the design trajectory (i.e., it points in the z-direction).  The individual velocities around the synchronous 
particle, given by r', is typically negligible compared to the collective motion of the bunch.  Consequently 
we drop the r'. This action leads to magnetic self-fields that are directly proportional to the electric self-
fields in the perpendicular direction.  The reason for this situation is that the collective motion along the 
design trajectory produces the magnetic fields.  (Forces from longitudinal magnetic fields will be zero by 
the cross product.)  We have 

(14) sz EaB ×=⊥ c
β , 
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where B⊥ is the magnetic field perpendicular to az.  Consequently, the perpendicular force has the form 
F⊥=(1-β2)E⊥, where E⊥ is the perpendicular self electric field.  The parallel self-force depends only on the 
parallel self electric field.  Collecting these results, the forces in all three directions can be written 

(15) 
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The resulting equations of motion for a beam particle are 
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Now we simplify the equations with some standard definitions.  First, let 

( 17) },,{where22
2 zyx

mc
k ∈≡ α

βγ
κα

α , 

which are the linear proportionality constants for the external focusing.  We further reduce the above 
equation set by introducing a standard parameter in beam physics, the beam perveance K.  This is a 
measure of the space-charge effect and we define it as 

 (18) 
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qqNK 11
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2 23
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where ε0 is the permittivity of free space, N is the total number of particles in the beam bunch, and ER = 
q/mc2 is the rest energy of the bunch particles in electron-Volts.  This definition is somewhat different than 
that of other authors [24][25]; it is more useful for the present discussion.  Unfortunately, there is no 
standard definition for the bunched beam perveance, as there is for continuous beams.  But we can 
reconcile this definition with that for a continuous beam by considering the charge Q of a beam.  For our 
bunched beam this value is easily recognized as Q = qN.  It can also be expressed in terms of the beam 
current I as 

(19) fIQ /= , 

where f is the drive frequency of the RF cavity.  For a continuous beam we can define Q by the relation I = 
vQ where v is the beam velocity and Q is now the charge per unit length of the beam.  Substituting Q = I/v 
into the equation for K yields 

(20) 
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qIK
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≡ , 

which is the expression typically seen in the literature. 

With these definitions the resulting equations of motion are 
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3. STATISTICS BACKGROUND 

3.1. The Density Function 
Assume that the particle beam can be described by a density distribution function f of the particles' 

phase space coordinates (x, x', y, y', z, z')~(x, x', y, y', z, z',1) and position along the design trajectory s.  That 
is, the entire ensemble of beam particles is represented by the function f.  The function f describes the 
distribution of the beam's mass (or charge) in phase space at each location s along the beamline.  It can also 
be interpreted as a probably density function characterizing the probability that any particle occupies a 
particular region of phase space at location s.  Thus, the probably that a particle lies in the infinitesimal 
phase space volume dxdx'dydy'dzdz' centered at (x, x', y, y', z, z') and located at position s along the 
beamline is 

(22) ''');',,',,',( dzdzdydydxdxszzyyxxf . 

Typically we assume that the particle ensemble is populous enough to be represented accurately by a 
continuous f.  However, it is always possible to formulate a discrete ensemble by assuming that f is a 
summation of displaced Dirac delta functions.  Finally, note that the function f(x,x',y,y',z,z';s) contains all 
the information of the beam but requires an enormous amount of storage space to represent on a computer, 
it is a function of seven independent variables.   

The evolution of the function f is governed by the Vlasov equation, which incorporates the equations 
of motion and the Lorentz force equation.  It is a partial differential equation containing partial derivatives 
of all seven independent variables and is typically intractable to solve in general.  We shall avoid the 
Vlasov equation by propagating only a small subset of the distribution's moments.  For this we require only 
the equations of motion and Liouville's theorem.   

3.2. Liouville's Theorem 
Liouville's theorem states that the total derivate of f with respect to s along particle trajectories is zero, 

or formally 

(23) 0]);('),(),('),(),('),([ =sszszsysysxsxf
ds
d . 

Note that this is a convective derivative that follows the particle trajectory.  The fully expanded derivative 
is 
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where x''=dx'/ds, etc. 

This is essentially a statement of the conservation of mass.  The practical considerations where the 
theorem holds true are for collisionless systems where there are ample enough particles such that the self-
fields are represented accurately by smooth functions.  That is, there is no "graininess" of individual 
particles; the distribution behaves much like a fluid.  Otherwise, Liouville's theorem is true only for 
distribution functions on 6N dimensional phase space, where N is the number of particles. 
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We mention in passing that by substituting the Lorentz force laws for x'', y'', and z'' in the above we 
obtain the Vlasov equation.  Thus, the trajectories {z(s)} where the above holds actually represent the 
characteristic lines of the Vlasov equation. 

3.3. Moments of the Distribution 
Moments of the distribution are function averages on phase space, weighted with respect to the 

distribution function.  For example, let g(x, x', y, y', z, z') be some arbitrary function on phase space, then 
the moment of g, denoted 〈g〉, is given by 

(25) 

∫
∫

=

≡

,)()(1

,''');',,',,',()',,',,',(1

6zzz dfg
N

dzdzdydydxdxszzyyxxfzzyyxxg
N

g
 

where the integration is taken over all of phase space,   

(26) zdzdydydxdxdd ′′′≡z6 , 

is the single basis on phase space 6-forms, and 

(27) ∫≡ zz 6);( dsfN , 

is the total number of particles in the ensemble.  (In mathematical parlance, we can view f as a measure on 
phase space.)  Note that with this definition 〈g〉 is still a function of s because f is a function of s. We shall 
be concerned foremost with the moments of phase space monomials, that is, moments of the form 〈x〉, 〈x'〉, 
〈x2〉, 〈xx'〉, 〈x'2〉 and their counterparts for the other phase space coordinates.  Theses moments represent the 
evolution of the beam's statistics, in particular the center of mass (average position and velocity) and the 
rms envelopes of the beam. 

Notice also that in the above definition 〈⋅〉 is normalized.  It is normalized by the total number of 
particles, a factor 1/N, so that the moment of 1 is 1, that is 〈1〉=1. 

3.4. Moment Equations 
Liouville's theorem enables us to formulate evolution equations for the moments of the beam.  

Specifically it allows the moment operator 〈⋅〉 and the differentiation operator d⋅/ds to commute.  For 
example, if g(z;s) is a function of the phase space coordinates and s, then the derivative of 〈g〉 with respect 
to s is given as 

(28) 
[ ]

g

dsfsgsfsg
N

dsfsg
Nds

dg
ds
dg

′=

′+′==≡′ ∫∫ ,);();();();(1);();(1 66 zzzzzzzz
 

Thus, we are able to move differentiation with respect to s within the moment operator and vice-versa. 

Now we may average the equations of motion with respect to the beam ensemble then employ 
Liouville's theorem to commute the differentiations with respect to s.  In the x-plane, we have for the first 
moments 

(29) 
.

2
,

02
xx E

qN
Kxxkxx

xx
πε

γ
γ

+′
′

−−=′′=′′

′=′

 

The quantity 〈Ex〉 is zero for symmetric charge distributions by pair-wise cancellation.  Since we assume 
that the beam has an ellipsoidally symmetric charge distribution in the sequel, we neglect this term. We 
then have the following equations for the first-order moments: 
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(30) 
[ ]1

,,,

222 +′
′

−−=′′

′=′

′
′

−−=′′

′=′

′
′

−−=′′

′=′

zzkz

zz

yyky

yy

xxkx

xx

zyx γ
γ

γ
γ

γ
γ  

Notice that the above equations are independent of the self-fields and represent the equations of motion 
for the beam's center of mass; they form a complete set.  Thus, these equations may be propagated 
independently.  To simplify the analysis in what follows, we often assume a centered beam to make 
computations easier.  We can then displace this centered beam according to the above equations describing 
the centroid motion.   

Now consider the second-order moments of the form 〈x2〉, 〈xx'〉, 〈x'2〉.  Proceeding as before, the 
equations for the x-plane moments are 

(31) 

xx

xx

Ex
qN

Kxxxkxxx

xE
qN

Kxkxxxxxxxx

xxxx

′+′
′

−′−=′′′=
′

′

+−′
′

−′=′′+′=′

=′=
′

0222

02222

22

2
2222

2
'

'2)(

πε
γ
γ

πε
γ
γ  

There exist similar equations for the y moments.  The z second moment equations are 

(32) 

zz

zz

Ez
qN

Kzzzzkz

zE
qN

Kzzkzzzzz

zzz

′+′
′

−′
′

−′−=
′

′

+
′

−−′
′

−′=′′

′=
′

02222

02222

2

2
2222

2

2

πε
γ

γ
γ

γ
γ

πε
γ

γ
γ

γ
γ  

In general we may also have cross moments of the form 〈xy〉, 〈x'y〉, 〈xy'〉,  and 〈x'y'〉.  The cross moments 
would typically result from bending magnets or misaligned beamline elements. 

From this point two differing approaches to simulation are typically employed: 1) we use the second-
order moment equations to develop a set of ordinary differential equations describing the rms envelopes of 
the beam, this technique is covered in Section 6.  2) We propagate the entire set of second-order moments 
in the form of a symmetric correlation matrix, this technique is covered in Section 7.  The later approach is 
more general than the former, since it can treat rotated ellipsoids and external coupling between phase 
planes. 

4. BEAM PHYSICS 
In this section we outline quantities and concepts that are particular to beam physics.  Specifically, we 

cover rms envelopes, rms emittance, and the rms phase space ellipse.   We also consider a linear 
approximation to the self-fields that is particularly important for beam physics calculations. 

4.1. The RMS Envelopes 
Here we introduce the notion of rms beam envelopes, which is fundamental in much of the beam 

physics literature.  The rms envelopes of a beam represent the boundary of the beam in a collective, or 
statistical sense.  As we see in the sequel, for ellipsoidally symmetric beams this statistical behavior is 
almost independent of the actual profile of the beam distribution.  That is, the rms envelopes of many 
beams behave the same regardless of the actual distribution. 

First, let us consider the mean values of the particle distribution.  We use zyx ,,  to denote theses first-
order spatial moments, that is  
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(33) zzyyxx === ,, . 

These values are the positions of the center of mass in the x, y, and z directions, respectively.  That is, they 
are the coordinates of the beam centroid.   

Now we consider the rms envelopes of the beam.  To do so we first introduce the following 
definitions: 

(34) 

.~

,~

,~

2/12

2/12

2/12

zz

yy

xx

≡

≡

≡

 

In the literature these quantities are commonly referred to as the rms envelopes of the beam.  It is important 
to point out that this is only true for a centered beam.  The true rms envelopes of a beam are actually the 
standard deviations of the density distribution f.  Denoting the standard deviations in the x, y, and z 
directions as σx, σy, σz, respectively, they are defined 

(35) 

[ ]
[ ]
[ ] ,)(

,)(

,)(

2/1222/12

2/1222/12

2/1222/12

zzzz

yyyy

xxxx

z

y

x

−=−≡

−=−≡

−=−≡

σ

σ

σ

 

or 

(36) [ ] [ ] [ ] 2/1222/1222/122 ~,~,~ zzyyxx zyx −=−=−= σσσ . 

Note that when the beam is centered, that is when 0=== zyx , the rms envelopes σx, σy, σz are equal to 
the quantities zyx ~,~,~ .  This is the situation most often encountered in the literature.  Typically a centered 
beam is assumed to simplify computations, particularly for the moments 〈xEx〉, 〈yEy〉, and 〈zEz〉.  A common 
approximation in simulation is the assumption that the beam is centered when computing the evolution of 
the second moments zyx ~,~,~ ; the offsets zyx ,, are computed independently to form the complete beam 
state.   

4.2. RMS Emittance 
One particularly important quantity in beam physics is the rms emittance, usually denoted ε~ .  This is a 

figure of merit indicating the area in each phase plane that the rms beam envelope occupies.  The rms 
emittance is a function of the second moments, for each phase plane it is defined 

(37) 

[ ]
[ ]
[ ] .~

,~

,~

2/1222

2/1222

2/1222

zzzz

yyyy

xxxx

z

y

x

′−′≡

′−′≡

′−′≡

ε

ε

ε

 

It is known that whenever all forces acting on the beam are linear and there is no acceleration, the rms 
emittance is an invariant of the motion [9][12][14].  An increasing emittance is usually indicative of a loss 
in beam quality.  Thus, the rms emittance of a beam typically increases whenever unwanted nonlinear 
forces are encountered.   

When the beam is accelerated the transverse rms emittances always decrease.  This condition is simply 
an artifact of the definitions of x' and y' and does not imply any decrease in random transverse kinetic 
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energy (temperature).  Since x'=px/p, it decreases with increasing longitudinal momentum p, which in turn 
decreases the rms emittance.  To see this consider the x phase plane and assume that the self-fields can be 
represented as the linear function Ex=ax, where a is a real number.  Now simply differentiate the definition 
of rms emittance 

(38) 
,~2

,2~

2

22222

x

x xxxxxxxx
ds
d

ε
γ
γ

ε

′
−=

′′′−
′

′+′
′

=
 

where the second line is obtained by substituting the derivatives from Eqs. (31).  The solution to this 
equation is 

(39) 
)(

~
)(~

2

2
0,2

s
s x

x γ

ε
ε = , 

where 0,
~

xε is the initial value.  Thus, we can see outright that when the beam energy increases the 
transverse rms emittances decrease.  Applying the same procedures to the longitudinal plane we get a 
different equation 

(40) zzz
ds
d

zz ′
′

+
′

−=
γ
γε

γ
γε 2~2~ 22 . 

Thus, if the RF phase is misaligned during acceleration, causing a nonzero 〈z〉, it is actually possible to 
experience emittance growth in the longitudinal plane. 

To alleviate the situation of decreasing transverse emittances with acceleration we may alternately use 
the normalized rms emittances, typically denoted nε

~ .  These emittances are defined as [24] 

(41) .~~~~,~~
,,,, zznyynxxn εβγεεβγεεβγε ≡≡≡  

Performing a similar analysis as with the rms emittances using similar assumptions, we find that the 
normalized rms transverse emittances behave as 

(42) 0,,,
~)()(~

xnxn ss εβε = , 

where 0,,
~

xnε is an arbitrary constant.  Thus, the transverse normalized rms emittances actually increase with 
increasing beam energy.  However, once the beam velocity approaches c these emittances level off with 
increasing beam energy. 

In our phase space coordinates the units of rms emittance are meter-radians.  However, recalling that 
there are several alternate coordinate systems for the z phase plane, it is common to find emittance values 
for this plane given in several different units.  When the z phase plane coordinates are (z,Δp/p) the units are 
meter-radians.  When the coordinates are (Δφ,ΔW) the units are degrees-electron volts.  Finally, when the 
coordinates are (Δt, ΔW) the units are seconds-electron volts.  To convert between theses units to meter-
radians we substitute the coordinate conversion formulas (7) and Error! Reference source not found. into 
the above definition for zε

~ .  The results are 

(43) 

,)eV(sec~
,)eV(deg~

,)rad-m(~)radm(~

sec

deg

−=

−=

=− Δ

z

z

zpz

C

C

C

ε

ε

εε

 

where the conversion factors CΔp, Cdeg and Csec are defined 
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(44) 
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1
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1
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⎞
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≡
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⎝
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−
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≡
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γ
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γ
γ

γ
βλ

γ

 

where ER=mc2/q is the rest energy of the beam particles in electron volts, and p0 = β0γ0mc is the momentum 
of the synchronous particle (p0c in eV).  Note that the beam energy W must also be given in electron-volts. 

4.3. Courant-Snyder Parameters for the RMS Ellipse 
When modeling beam distributions, the projections of the distributions onto each phase plane are 

represented ideally by an ellipse.  Here we introduce the Courant-Snyder, or Twiss, parameters often found 
in the literature.  These parameters describe the projections of the beam distribution onto the phase space 
planes.  In particular, we shall describe the ellipse relating to the second-order moments of the beam (the 
rms moments).  This ellipse is congruent to the phase space ellipse of the equivalent uniform beam.  To 
make explicit calculations we consider the x phase plane with the coordinates (x,x').  There are analogous 
results for the y and z phase planes.   

Consider an ellipse centered in x phase space as shown 
in Figure 2.  The general equation for such an ellipse can 
be expressed 

(45)  xxxx xxxx εβαγ ~2 22 =′+′+ , 

where αx, βx, γx are known as the Courant-Snyder 
parameters for the x phase plane.  These parameters are not 
independent; they are related through the equation 

(46) 12 =− xxx αγβ . 

This relation enforces the area enclosed by the ellipse to be 

xεπ
~ , otherwise, the area would be )/(~ 2

xxxx αγβεπ − .  
Note that Eq. (45) can be written in the matrix vector format 

(47) x
xx

xx
T

x
x

x
x

ε
βα
αγ ~=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

, 

where the determinant of the above matrix is unity by Eq. (46).  Thus, the Twiss parameters are 

It is our desire to relate this ellipse to the rms quantities of the beam distribution.   

We can solve Eq. (45) for the particular values of x and x' in the phase space shown in Figure 2 (for 
example, see [24] and [25]).  Consider the projections of this ellipse onto the x and x' axes.  We want the 
maximum extent of these projections to be equal to the rms quantities for x and x', respectively.  This 
condition leads to the definitions 

(48) 

,~

,~
,~

2/12

2/12

x

xx

x

xx

xx

xx

′≡

′−≡

≡

εγ

εα

εβ

 

where the second equation follows from Eq. (46) and the definition of rms emittance (37).   

x

x’

xxεβ ~

xxεγ ~

x

x
x β

εα
~

−

 
Figure 2: rms phase space ellipse 
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If the coordinates for the longitudinal phase plane are given as (Δφ,ΔW), the conversion of the Courant-
Snyder parameters to the (z,z') units is given by the following: 

(49) 

deg),eV/(1
)1(

1360)rad/m(

,)eV(deg/
1

)1(
1360

)m/rad(

),unitsno()unitsno(

2

2
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zz
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γγβλβ
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+
=

+
=

−=

 

where, due to an unfortunate choice of notation, we have β's and γ's representing both relativistic 
parameters and Courant-Snyder parameters.  The grouping of terms was chosen to make the context clear.  
When the longitudinal coordinates are given as (z,Δp/p), the conversion of the Courant-Snyder parameters 
to (z,z') units is  

(50) 
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When the longitudinal coordinates are given as (Δt,ΔW), the conversion of the Courant-Snyder parameters 
to the (z,z') units is given by 

(51) 
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4.4. The Mean Value Vector and Correlation Matrix 
Here we introduce the mean-value vector z and symmetric 7×7 correlation matrix χ.  These quantities 

contain the state of the beam statistics up to second order.  Maintaining consistency with previous notation, 
let the moments 〈x’〉, 〈y’〉, and 〈z’〉 be denoted 

(52) zzand ′≡′′≡′′≡′ yyxx , 

respectively.  We accordingly denote the vector of first-order moments as 

(53) ( )
( ) ,

,1
T

T

zzyyxx

zzyyxx

′′′=

′′′=

≡ zz

 

where the superscript T indicates transposition.  Thus, z is the column vector of mean values for the phase 
space coordinates.  Note that z  can be a function of the path length parameter s.   

When considering the set of second-order moments of the beam it is convenient to work with a matrix 
whose elements are these moments.  We can form such a matrix by taking the moment of the outer product 
zzT.  Denote the result as χ we have 
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(54) 
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The matrix χ is called the correlation matrix of the beam distribution. The matrix χ represent all the 
moments up to, and including, order two at each position s along the beam line.  Thus, χ contains the 
complete description of the beam's statistical behavior up to order two.  This is a convenient representation 
for the beam state when doing simulation.  Because of its statistical nature, χ is a symmetric, positive semi-
definite matrix.  Thus, it always has a complete set of eigenvalues and orthonormal eigenvectors. 

It is sometimes convenient to decompose χ into sub-matrices corresponding to the individual phase 
planes.  For example, considering each phase plane x, y, z whose coordinates are represented by the 
respective vectors 

(55) 
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then the sub-matrices for the x, y, and z phase planes are given as 〈xxT〉, 〈yyT〉, 〈ζζT〉.  Denoting these sub-
matrices as χxx, χyy, χzz, respectively, we have 

(56)  
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

′′

′
=≡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

′′

′
=≡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

′′

′
=≡

2

2

2

2

2

2

,,
zzz

zzz

yyy

yyy

xxx

xxx
TTT ζζχyyχxxχ zzyyxx , 

Thus, the matrix χxx is the correlation matrix of the x phase plane, ignoring coupling, likewise for the y and 
z planes.  We have one such 2×2 matrix for each phase plane, plus we have matrices containing the cross-
correlations between phase planes such as 〈xyT〉, 〈xζT〉, and 〈yζT〉.  The full second-order moment matrix χ 
has the block matrix form 

(57) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=≡

1TTT

T

zyx
zχχχ
yχχχ
xχχχ

zzχ
zzzyzx

yzyyyx

xzxyxx

, 

where each χαβ is a 2×2 symmetric matrix.  By symmetry of χ we must have χαβ=χβαT.   

4.5. The Covariance Matrix and Courant-Snyder Relations 
Another quantity of interest is the covariance matrix, which is the matrix of central second moments.  

This matrix is akin to the standard deviation of single variable statistics.  By a central moment, we mean 
that the moments are taken about the mean of the distribution.  Thus, the covariance matrix σ is defined 

(58) T))(( zzzzσ −−≡ . 

Note that by expanding the outer product of vectors then commuting the moment operator yields  

(59) Tzzχσ −= . 
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Thus, we can determine the covariance matrix from the mean value vector and the correlation matrix.  The 
covariance matrix has the block matrix form 

(60) 
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where 0 is the two-vector of zeros.  Note that when the beam is centered, that is when 0=z , the covariance 
matrix and the correlation matrix are the same save for a value 1 in the constant coordinate entry. 

When the motion is uncoupled between phase planes, σ has the simplified block-diagonal form 

(61) 
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where each σαα is the 2×2 sub-covariance matrix for the α phase plane and 0 is the 2×2 zero matrix.  In this 
situation the covariance matrix can be expressed in terms of the Courant-Snyder parameters.  Or rather, we 
can view the Courant-Snyder parameters as an alternate parameterization of the independent covariance 
matrices σαα.  Referring to Eqs. (48) for a centered beam, the covariance matrices σxx for the separate phase 
planes can be written 
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Thus, given the Courant-Snyder parameters describing a beam we can construct the uncoupled phase 
covariance matrix in Eq. (61) using Eqs. (62).  From there, given the location of the beam centroid in phase 
space z  we can form the correlation matrix by solving Eq. (59) for χ to yield 

(63) Tzzσχ += . 

4.6. Linearization of the Self-Fields 
It has been found that the evolution of the beam's second moments is determined primarily by the 

linear part of the forces [22].  The nonlinear parts are usually associated with emittance growth of the beam 
(see Section 4.1).  In this analysis we consider only linear forces.  We have already assumed that the 
external forces are linear according to machine design.  The self-fields will, in general, have nonlinear 
components and, thus, the self-forces also will.  Here we describe a linear approximation to the self-fields 
Ex, Ey, Ez which is appropriate for our analysis. 

Consider the self-field in the x-direction, Ex.  We begin by assuming an expansion of the form 

(64) xaaxEx 10)( +≈ . 

where a0 and a1 are real numbers independent of x.  Terms involving the other phase space coordinates (of 
the form b1y, c1z) are zero with the assumption of symmetry (see Section 5.1).  One method of determining 
the coefficients a0 and a1 is by a minimum variance, or least squares, estimation technique [8][17].  Here 
we seek to minimize the norm of the error in the approximation, which is ||Ex - a0 - a1x||, Ex being the actual 
self-field.  In order that the expansion be most accurate in areas of higher beam concentration, we choose 
the norm ||⋅|| to be 

(65) 
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It is easily checked that this is a valid norm for functions of the phase space coordinates.  Using the least 
squares fitting technique, we are left with the following Gram system for the coefficients: 
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The solution to this system is  

(67) ,1, 221220 xx xE
xx

axE
xx

x
a

−
=

−
−=  

Thus, the electric field has the approximation 
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We have analogous expressions for Ey and Ez so that all the field components have the following linear 
approximations: 
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Note once again that these linear approximations to the true fields are most accurate in the regions of 
highest beam density.  They are most useful when considering the collective behavior, or rms behavior, of 
the beam. 

When the beam is centered on the origin in configuration space these expressions simplify.  This 
situation can be achieved through a simple coordinate translation, which does not affect the shape of the 
electric field and, therefore, the moment 〈xEx〉. When the beam is centered (i.e., when 0=== zyx and 

xx
~=σ ) the values of the expansion coefficients are 

(70) 
210 and0

x

xE
aa x== . 

Thus, in this case 

(71) x
x

xE
xaE x

x 21 =≈ . 

4.7. Tune Depression 
To demonstrate the usefulness of the material in the previous section we digress somewhat to show 

how it is related to a common parameter in beam physics known as the tune depression η.  Tune depression 
is a parameter indicating the relative effect of space charge compared to the effects of transverse focusing 
in a beam channel.  To illustrate, return to the original equations of motion (21) for an individual particle.  
Employing the linear approximation to the self-field given by Eq. (71), the approximate equation of motion 
in the x-plane is 

(72) 0
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1
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γ
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The square root of the quantity in parenthesis is known as the tune-depressed phase advance, or phase 
advance with space charge and is typically denoted k in the literature.  The quantity kx in the above is called 
the phase advance without space charge and is usually denoted k0.  We see that an immediate consequence 
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of space charge is the reduction of external focusing.  Consequently, the frequency of the particles' betatron 
oscillations, or betatron tune, decreases with increasing space charge forces.   

Tune depression η is defined 

(73) 0/ kk≡η . 

It is the factor by which the betatron tune frequency is decreased, having a maximum value of 1 (no tune 
depression) and a minimum value approaching 0 (complete tune depression).  Using the above expansion 
we find the tune depression (in the x plane) to be 
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From the above relation we see that the tune depression is a function of the self-fields, the beam energy, 
and the external fields. 

5. ELLIPSOIDAL BEAMS AND THE EQUIVALENT UNIFORM BEAM 
Here we define and describe ellipsoidal beams.  For these beams it is possible to compute the field 

moments 〈xEx〉, 〈yEy〉, 〈zEz〉 analytically in terms of elliptical integrals.  The results of these calculations 
lead to the concept of the equivalent uniform beam.  This notion says that we may model any (ellipsoidal) 
beam, at least approximately, by a uniform density beam with the same second moments. 

5.1. Ellipsoidally Symmetric Charge Density Distributions 
We restrict our attention to ensemble distributions 

that are ellipsoidally symmetric in configuration space, 
that is, in (x,y,z) space.  For simplicity we assume an 
upright, centered ellipsoid at the origin.  For an arbitrarily 
oriented ellipsoid we can always apply a change of 
coordinates to achieve this condition (see next section).  
In this situation the charge density ρ(x,y,z) has the form  
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z
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xFqzyxρ , 

where q is the unit charge, and a, b, c represent the semi-
axes of the reference ellipsoid in the x, y, z directions 
respectively.  The function F(⋅) represents the profile of 
the distribution and is related to the density function f by  

(76) ∫∫∫
ℜ

′′′′′′≡
3

);,,,,,();,,( zdydxdszzyyxxfszyxF ,  

that is, we have integrated out the momentum dependence.  This situation is depicted in Figure 3. 

We compute the spatial moments of this distribution in order to find a relation between the moments, 
the total number of particles N, and the semi-axes a, b, c.  For example, the total number of particles N is 
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This integral may be computed by using the change of coordinates  

a
b

c

x

y

z

 
Figure 3: reference ellipsoid for ellipsoidally symmetric 

charge density 
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with the result 

(79) 

.2

,)(sin

2/1

0

22
2

0 0

Fabc

drrFrddabcN

π

φθθ
ππ

=

= ∫∫ ∫
∞

 

where Fn is the nth moment of F, defined as 
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≡
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)( dssFsF n
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Note that n is not restricted to integer values.  Using a similar approach we can compute the following 
moments of the ellipsoidal distribution: 
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These equations provide us expressions of the semi-axes a, b, c in terms of the second spatial moments 〈x2〉, 
〈y2〉, 〈z2〉, respectively. 

5.2. Arbitrarily Oriented Ellipsoidal Charge Densities 
Here we consider ellipsoidal charge densities that are centered on the xyz coordinate axes, however, 

they may have arbitrary orientation.  The general representation of such a charge density is given by [3] 

(82) ( )rτr 1),,( −= TqFzyxρ , 

where ρ, q, and F are as in the previous section, r is the position vector in three space, that is, 

(83) Tzyxrrr )()( 321 ≡=r , 

and  

(84) 
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τ  

is a symmetric, positive-definite matrix in GL(3,ℜ).  (The motivation for representing ρ using the inverse 
τ−1 should become clear shortly.)  Because of its symmetry, we can find a matrix R in the special 
orthogonal group SO(3) that diagonalizes τ.  That is, 

(85) TRDRτ = , 

where D is the diagonal matrix of eigenvalues of τ, specifically 
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(86) 
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The eigenvalues λ1,λ2,λ3 are the squares of the ellipsoid semi-axes (the values a2,b2,c2 of the previous 
section).  We can also find a set orthonormal (column) eigenvectors of τ denoted {e1,e2,e3}.  These 
eigenvectors may be used to build the matrix R as follows: 

(87) ( )321

3,32,31,3

3,22,21,2

3,12,11,1

eeeR MM=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
RRR
RRR
RRR

. 

Recall that since R is in the special orthogonal group SO(3) it has the following properties: RRT=1, 
R−1=RT, det(R)=1. 

To demonstrate the usefulness of the above facts we compute the total number of particles N in the 
charge density 
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where we have substituted τ=RDRT in the second line.  The parenthetical groupings suggest the following 
change of coordinates: 
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from which we get 
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Now we have the expression for N in the same form as we started with in the previous section.  Thus, 
converting the integration to spherical coordinates using 
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to find 
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This result is the same as Eq. (79) of the last section if we identify det(τ)=a2b2c2. 

Another useful fact is that for the density distribution of Eq. (82), τ is actually the matrix of all second-
order moments.  Specifically, we find that 
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(93) 
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To see this, start with the following expression 
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then employ the orthogonal coordinate transform r=Rs of Eq. (89) to yield 
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where we note that ri=∑Ri,msm and rj=∑Rj,nsn; Ri,m and Rj,n being the elements of the orthogonal matrix R in 
Eq (87).  Switching to the spherical coordinates of Eq. (91) and performing the integration over φ produces 
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Thus we see that Eq. (93) is true. 

5.3. Ellipsoidally Symmetric Phase Space Distributions 
In the previous section we considered beam distributions that were ellipsoidally symmetric in 

configuration space.  Here we generalize to the case where the distribution has hyper-ellipsoidal symmetry 
throughout all of phase space.  This situation is equivalent to expressing the distribution function in terms 
of a quadratic form in the phase space variables.  Specifically, if σ is the covariance matrix defined in 
Eq.(58), then the distribution function f has the form 

(97) ( )zσz 1),,,,,( −=′′′ Tfzzyyxxf . 

Using a similar approach as in the previous subsection, it can be shown that in this case any second order 
moment 〈zizj〉 has the value (for a detailed exposition of this fact see [9]) 
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(99) ∫
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)( dssfsf n
n , 

and the σij are the elements of the covariance matrix σ.  The only exceptional variation from the previous 
procedure is employing six-dimensional hyper-spherical coordinates.  To demonstrate their application, 
consider the calculation of the total number of particles N in the distribution 

(100) ∫
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==
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61 )( zzσz dfN T  

After rotating the coordinates by the diagonalizing matrix R∈SO(6) we have the decoupled integral 
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where D=RTσR is the diagonal matrix of eigenvalues of σ.  Now apply the change of coordinates 
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where 

(103) ,sinsinsinsin 432143
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4 φθθθθθθθθ dddddd ≡Ω  

is the solid angle in six dimensions.  The total solid angle Ω in six dimensions is the surface area of the unit 
sphere given by 
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Thus, the total number of particles N has the value 
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Using Eq. (98) we can write an analogous expression to Eq. (45) for the entire rms phase space hyper-
ellipsoid compactly in matrix-vector notation as 

(106) 
χ

zχz
xx det

~
1 ε
=−T  

where ε~  is the hyper-volume of the entire six-dimension phase-space ellipsoid.  Note that here it is 
necessary to normalize by the determinant of χ since its value is not required to be unity.  

5.4. Computation of the Field Moments 
It is possible to compute the field moments explicitly (in terms of elliptic integrals) for beams having 

ellipsoidal symmetry in configuration space. We start from the following formula for the self-electric 
potential of such a bunch [11][15]: 
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where the limit of integration T(x,y,z;t) is defined 
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The formula assumes that the bunch is centered at the (x,y,z) origin and that its semi-axes a,b,c are aligned 
with the coordinate axes x,y,z as shown in Figure 3.  It is found by inverting Laplace's equation for φ in 
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ellipsoidal coordinates (the variable t is actually an ellipsoidal coordinate).  Using Eq. (107) the expressions 
for the field moments are computed to be (see Appendix A) 
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where Γ carries the distribution information (it is a function of the profile F), and RD is the Carlson elliptic 
integral of the second kind [5][6].   

Carlson’s definitions for elliptic integrals are much more convenient in this situation.  Moreover, they 
lend themselves nicely to numeric computation [19].  Definitions for these integrals are as follows: 
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Note that only RF is symmetric in its arguments.  It is possible to express all the conventional elliptic 
integrals (E, F, K, etc.) in terms of RF, RD and RJ. 

5.5. The Equivalent Uniform Beam 
We would prefer to express Eqs. (109) in a form independent of the parameters a, b, c.  Rather we 

could use the variables 〈x2〉, 〈y2〉, 〈z2〉 by employing the relations (81).  First note that 
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for any positive real number r.  Thus, choosing r=1/c2 we have 
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Using this property of RD we can express the self-moments as 

(113) 

,1,,1
243

)(

,1,,1
243

)(

,1,,1
243

)(

2

2

2

2

2/12
0

2

2

2

2

2/12
0

2

2

2

2

2/12
0

⎥
⎦

⎤
⎢
⎣

⎡

><
><

><
><

><
Λ

=

⎥
⎦

⎤
⎢
⎣

⎡

><
><

><
><

><
Λ

=

⎥
⎦

⎤
⎢
⎣

⎡

><
><

><
><

><
Λ

=

z
y

z
xR

z
QFzE

y
z

y
xR

y
QFyE

x
z

x
yR

x
QFxE

Dz

Dy

Dx

πε

πε

πε

 

where the functional Λ(F) is defined as 
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The functional Λ accounts for the effects of the particular beam distribution profile on the beam dynamics.   

Table 1:  Ellipsoidally symmetric profiles F and the corresponding Λ(F).  The quantity C represents an arbitrary constant. 

Distribution F(s) Λ(F) 

Uniform 

⎩
⎨
⎧

>
≤

10
1

s
sC

 9295.0
5
3

5
6

≈  

Parabolic (Waterbag) 

⎩
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>
≤−

10
1)1(

s
ssC

 9352.0
7
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7
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≈  

Hollow 
22σ

s

eCs
−

 9462.05
4
3

≈
π

 

Gaussian 
22σ

s

eC
−

 9772.03
≈

π
 

Sacherer discovered that the functional Λ is nearly constant with respect to the distribution F [22].  
Table 1 lists the values of Λ for several common distributions. We see there that its value varies only by 
about 5% for the distributions listed.  The implication is that the second-order spatial moments (i.e., the rms 
envelopes) of any bunched beam behave approximately the same, irrespective of the particular beam 
profile.  In other words, the beam dynamics are only loosely coupled to the actual form of the distribution, 
so long as it is ellipsoidal.  Consequently, we are justified in modeling any laboratory beam with any other 
beam having the same second moments 〈x2〉, 〈y2〉 and 〈z2〉.  This notion leads to the concept of the 
equivalent uniform beam.  This bean is the uniform density beam having the same second moment as the 
actual laboratory beam.  Since the uniform beam has well-defined boundaries, this distribution is typically 
preferred.  The moments in this case can be written as 
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where we have used the relation 
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Finally, we note in passing that in the case of continuous elliptic beams, the dynamics are completely 
independent of the beam profile. 

Recognize that the semi-axes of the reference ellipsoid a, b, c, are actually the envelopes of the 
uniform beam.  This being so, we can use Eqs. (81) to relate the envelopes of the uniform beam and the 
second spatial moments.  It is common in the literature to denote the envelopes of the equivalent uniform 
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beam by X, Y, Z corresponding to the semi-axes a, b, c, respectively.  Thus, for the equivalent uniform 
ellipsoid we have 

(117) [ ] [ ] [ ] zzZyyYxxX ~55~55~55
2/122/122/12 ====== . 

Likewise, it is common to define the effective emittance ε of the equivalent uniform beam in terms of the 
rms emittance according to the following: 

(118) zzyyxx εεεεεε ~5~5~5 ≡≡≡ . 

The effective emittances represent the areas in the phase planes occupied by the equivalent uniform beam. 

We can also determine the second-order moments of the equivalent uniform ellipsoid using their 
definitions (117) and the definition of rms emittance (37).  For the x-plane we find 
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where X'=dX/ds is the rate of change of the equivalent beam envelope with respect to s.  There are 
analogous relations for the other phase planes. 

The envelope X of the equivalent uniform ellipsoid can be expressed in terms of the Courant-
Snyder parameters through inspection of the extremal points of the trace-space ellipse (for example, see 
Reiser [24]).  The result is 
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There are similar expressions for the y and z phase planes. 

6. BUNCHED BEAM ENVELOPE EQUATIONS 
The final result of this section is a set of coupled ordinary differential equations describing the 

evolution of the equivalent uniform beam, given by Eqs. (124).  Although nonlinear, these equations are a 
relatively simple set of ordinary differential equations that may be integrated numerically using standard 
techniques.  The shortcoming of this description is that, aside from space charge, it does not account for 
external coupling between phase planes.  That is, coupling such as that from misaligned quadrupoles, skew 
elements, etc., cannot be modeled.  This drawback is circumvented in the follow section on transfer matrix 
methods by considering all the second-order moments.  

6.1. Equations for Centroid Motion 
The equations for the first-order moments are simply the equations of motion for the centroid of the 

beam, which behaves as a single particle.  The evolution equations for the average values are found with 
reference to Eqs. (30).  By differentiating the first equation of each set in Eqs. (30) then substituting into 
the second we find 
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which are a closed set involving only zyx and,, .  They are damped harmonic equations and may be 
solved independently by standard techniques.  Recall that the kα2 are functions of s and that it is possible for 
kα2 to be negative, that is, κα is negative.   

6.2. Bunched Beam RMS Envelope Equations 
Here we develop a set of coupled ordinary differential equations that describe the evolution of the rms 

envelopes of the beam, specifically the quantities zyx ~,~,~ .  These equations describe the behavior of the 
beam extent in a statistical sense.  They can then be used to derive the equations for the equivalent uniform 
beam, as is done in the following subsection. 

From the second-order moment equations (31) we can derive equations involving only the quantities 
zyx ~,~,~ .  Recall that x~ ≡〈x2〉½.  If we differentiate x~  twice with respect to s then use the relations (31) and 

the definition of rms emittance (37) we find a second-order differential equation for x~ .  Proceeding in an 
analogous manner for the y and z planes we are left with the following set of ordinary differential 
equations: 
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Note that these equations involve the moments 〈xEx〉, 〈yEy〉, 〈zEz〉.  As we have seen, these moments are 
generally functions of the zyx ~,~,~ ; so the above set form a coupled set of ordinary differential equations.  
Thus, once we determine the field moments we can solve the system using standard techniques (e.g., 
numerically).  As they stand, these equations are valid for all beam distributions.  In the next subsection we 
consider ellipsoidally symmetric beam distributions. 

6.3. Ellipsoidally Symmetric Beams and the Equivalent Uniform Beam 
Here we substitute the values 〈xEx〉, 〈yEy〉, 〈zEz〉 that we calculated for beams with ellipsoidal symmetry 

into the above rms envelope equations (122).  The result is  
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These are the rms envelope equations for bunched beams with ellipsoidal symmetry. 
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Now consider the equivalent uniform beam.  Substituting the value of Λ for the equivalent uniform 
ellipsoid and using relations (117) and (118) we have 
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where we have used relation (111) to eliminate the fractional arguments in the elliptical integrals.  When 
doing numerical computation, however, using the rational arguments for the elliptical integrals is probably 
more stable.  For example, from Eq. (111) it is probably best to compute RD(X2,Y2,Z2) as 
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6.4. Approximate Form of the Envelope Equations 
In the literature, the bunched beam envelope equations are sometimes expressed without explicit 

reference to elliptic integrals, typically by introduction of a “form factor” and/or approximations in lieu of 
the integrals [13].  There, we see algebraic expressions or expressions involving elementary functions 
instead of the special functions.  One way to achieve this form is with the procedure given below.  The 
approximation presented here is accurate when the transverse plane envelopes X and Y are approximately 
equal. 

To simplify the discussion below, we begin by 
immediately introducing the form factor ξ.  It is 
defined by 
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A plot of this function is shown in Figure 4.  From 
the figure we see that ξ has a value of 1 at s=0, 1/3 
at s=1, then asymptotes toward zero as s approaches 
infinity.  Note that ξ has the definition given by the integral expression, however, this integral may be 
expressed analytically in terms of elementary functions according to the above. 

Using the form factor we can approximate the elliptic integrals by the following: 
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Figure 4: form factor ξ(s) 
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where the approximations are most accurate when X≈Y, that is, the axisymmetric case.  Substituting the 
approximations for the elliptic integral into the envelope equations for the equivalent uniform ellipsoid 
(124) yields the approximate envelope equations for the equivalent beam.  They appear as follows: 
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where we note the rational argument of the form factor ξ. 

For the reminder of this subsection we confirm the approximations of Eqs. (127).  We begin by 
performing an expansion of the x and y envelopes X, Y about their axisymmetric value R.  Employing a 
small perturbation parameter ε <<1 (not to be confused with beam emittance) we have 
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With this expansion, note that 
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That is, R can be interpreted as the average value of X and Y to first order.  The perturbation parameter 
allows us to keep track of the order of accuracy in our approximations.  As ε increases the beam may 
become increasingly more eccentric in the transverse plane.  In fact, our final results for this section are 
exact for axisymmetric beams. 

Consider the envelope equation for the z plane.  Writing out the elliptic integral explicitly in this case 
gives the following expression: 
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where we have pulled a factor XY from each product in the denominator, then applied a change of 
variables.  The expression under the radical can be written 1)//(2 +++ tXYYXt  with the term in 
parenthesis expanded as 
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Thus, 
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and we can approximate the elliptic integral as 
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where we have identified the form factor ξ(⋅).   
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Now consider the transverse plane, in particular, the x plane.  Results for the y plane follow in an 
analogous manner.  The elliptic integral can be written 
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where, again, we have pulled a factor XY from each product in the denominator, then applied a change of 
variables.  Now we expand the last two terms in the denominator as 
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Thus, we can approximate the elliptic integral as 
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where the auxiliary function η(⋅) is defined 
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The equality on the second line is found through integration by parts.  From this second relation we can 
express the elliptic integral for the transverse plane in terms of the original form factor 
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Likewise, for the y plane we have 
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Notice that our approximations for the transverse plane elliptic integrals are only accurate to order ε 
whereas the longitudinal plane approximation is accurate to order ε2.  This condition makes sense in that 
the transverse plane approximations are more sensitive to the eccentricity in X and Y than the longitudinal 
approximation. 

7. TRANSFER MATRIX APPROACH 
Here we assume that, to first order, the dynamics of each beamline element n can be represented by a 

matrix Φn, known as the transfer matrix for the element.  Thus, the action of the element on a particle with 
phase space coordinates z would be given by the matrix-vector product Φnz.  In many situations it is 
possible to explicitly calculate the transfer matrix for a particular beamline element a priori, either 
analytically or numerically using the principles of linear systems.  Moreover, it is found that, with a 
conjugation operation, the rms moments of the beam can be propagated using the same transfer matrix Φn. 
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For practical numerical simulation we usually separate the action of the external elements and the 
space charge effects.  That is, the beam is propagated through the element according to its external forces, 
and corrections are applied to account for the space charge along the way.  We find that it is possible to 
represent the action of the linearized space charge forces as a transfer matrix.  Consequently, simulating the 
evolution of the moments up to second order requires determination of the transfer matrices for each 
beamline element and the transfer matrix that accounts for space charge. 

7.1. Transfer Matrices and External Elements 
Ignore space charge for the moment.  Referring to Eqs. (21), the equations of motion for the x plane 

can then be put into the matrix-vector form 
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In principle, if we know kx
2(s) and γ(s) there always exists a solution to Eq. (141) of the form [10] 
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where x(0) is the initial value of x(s), and Φ(s) is the fundamental matrix of the system; it is a matrix 
function of the independent variable s having the following properties: 
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where I is the identity matrix.  We use this fact to develop a numerical algorithm for simulation.  If we 
determine the matrix Φ for each beamline element (say by explicit calculation or by numerical integration 
of the above equation for Φ), then the particle coordinates can be propagated by simple matrix 

multiplication.  (This fact comes from the semi-group property of the fundamental matrix.) 

We can discretize the continuous matrix-vector system (143) by considering only points at the entrance 
and exit locations of each beamline element.  Let Φn denote the fundamental matrix solution for beamline 
element n having length ln evaluated at the final location, that is 

(145) )( nn lΦΦ ≡  

The constant matrix Φn is known as the transfer matrix for the element n.  Now let xn denote the state of 
the particle at the entrance of the nth beamline element 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: transfer matrix representation of the beamline 
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(146) )( nsxxn ≡ , 

where sn is the location of the nth element's entrance.  This situation is shown in Figure 5.  Propagation of 
the particle state from one element to the next is given by the set of discrete equations 

(147) K,1,01 ==+ nnnn xΦx  

Thus, instead of a set of continuous ordinary differential equations we now have a set of discrete transfer 
equations to describe the particle motion.  By the linearity of electromagnet forces we can describe the 
action of each element by its transfer matrix Φn then use a separate process to determine the space-charge 
effects down the beamline.   

Many times we can compute the transfer matrix for a beamline element analytically.  For example, in 
the case of an ideal quadrupole lens where the forces are linear throughout and the fringe fields are 
negligible, then the transfer matrix is found to be 
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where k is the quadrupole focusing strength, l is the length of the quadrupole, and where the quadrupole is 
focusing in x and defocusing in y.  Note that in this ideal case there is no coupling between phase planes.  A 
description including misalignments would contain nonzero values in the off-diagonal blocks. 

7.2. Space Charge Impulses 
In the previous subsection we saw that, barring space charge, the transfer matrix for each element can 

be used to propagate a particle's state through the element.  In the following subsections we find that the 
same transfer matrix can also be used to propagate the moments of the beam distribution through the 
element.  Consequently, we would like to formulate a transfer matrix representation for space charge 
effects.  Here we develop such a matrix. 

A straightforward approximation that simulates the action of space charge is to "kick" the beam at 
regular intervals.  Specifically, we apply the space charge effect through a section of length Δs all at once, 
as a momentum impulse.  This technique is equivalent to modeling space charge as a defocusing thin lens.  
Of course to maintain accuracy is it necessary that Δs be sufficiently small.  The magnitude of the impulse 
is determined by returning to the Newton's inertia equation 

(149) },,{, zyxF
dt
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s ∈= αα

α , 

where pα is the momentum component in the α direction and Fs,α is the self force in the α direction.  To 
illustrate the computation we consider specifically the x phase plane.  We start with the expression for the 
force on a beam particle given by Eqs. (15), considering only the term specific to the self force.  
Approximating the derivative dp/dt by finite the differences Δp/Δt and using the linearized electric field of 
Eq. (71) transforms the above equation into the following approximation: 
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Recognizing that Δt=Δs/v and converting to our normalized momentum x'≡px/p we have 
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(151) 
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where the thin lens defocal length due to space charge fsc,x (in the x phase plane) is defined as    
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Thus, the action of space charge in the x plane can be written in transfer matrix form, using homogeneous 
coordinates we have 
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where Δs is the length over which the space charge effects are being applied.   

In the z phase plane the calculations are somewhat different although the result is the same.  There the 
self-force on a particle is Fs,z=qEz, however Δz'=(1/γ2)Δ(Δp/p) so we end up with the same factor of γ in the 
force terms in all planes.  The full transfer matrix Φsc that applies the space charge kick over a distance Δs 
is then 
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Since  fsc,x depends upon 〈x〉, 〈x2〉, and 〈xEx〉, these quantities must be recalculated whenever the dimensions 
of the beam bunch change appreciably.  Likewise for the other defocusing strengths fsc,y and fsc,z.  
Specifically we are saying that the space charge transfer matrix is a function of the covariance matrix as 
well as the distance Δs, that is, 

(155) ),( sΔ= χΦΦ scsc . 

Although we are still using matrices to describe the effects of space charge, the result is nonlinear.  
Consequently, we must be careful when using this technique.  The distance Δs must be small enough so the 
above matrix accurately represents the space charge forces through the interval. 

7.3. Space Charge Defocal Lengths 
The values of the space charge defocal lengths can be computed using the results of Section 5.4.  There 

we determined the values of 〈xEx〉, 〈yEy〉, and 〈zEz〉 for an ellipsoidal density distribution analytically, in 
terms of elliptic integrals.  Recall, however, that to simplify the calculations we picked an orthogonal 
coordinate system centered on the beam centroid and aligned the beam ellipsoid axes.  To use these 
analytic results it is necessary to rotate an arbitrarily oriented ellipsoid into this special coordinate system. 
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Rather than center the beam on the coordinate origin we may instead compute the moments 

zyx EzzEyyExx )(and,)(,)( −−− .  Note, however, that  
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Since 〈Ex〉=0 by Newton’s third law.  The same is true for the moments 〈yEy〉 and 〈zEz〉 in the other two 
phase planes.  Thus, so long as we use rms envelope values σx, σy, σz defined in Eqs. (35) in lieu of the 
moments 〈x2〉, 〈y2〉, 〈z2〉 we can use the expressions for 〈xEx〉, 〈yEy〉, and 〈zEz〉 in Eqs. (113).  That is, after we 
rotate into the proper coordinate system.  Recall from Table 1 we see the distribution parameter Λ is only 
loosely coupled to the actual distribution profile.  Since Λ appears as a factor in the expressions for 〈xEx〉, 
〈yEy〉, and 〈zEz〉 in Eqs. (113) we must pick a particular distribution profile for computational purposes.  
When we supply the value of for the equivalent uniform beam, Λ=2(3/5)3/2, we find the thin lens defocal 
lengths to be 
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where K is the beam perveance defined by Eq. (18) and the σx, σy, σz are the rms envelopes defined in Eqs. 
(35).  The above values are the defocal lengths for an ellipsoid that is centered and aligned to the beam 
axes. 

To rotate our beam ellipsoid into its natural coordinate system consider the following matrix composed 
of elements of the covariance matrix σ: 
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The off-diagonal terms 〈xy〉, 〈xz〉, 〈yz〉 of τ indicate coupling between the phase planes.  Note that τ is 
positive definite and symmetric, therefore it is diagonalizable having a complete set of orthonormal 
eigenvectors.  Consequently we can find a matrix R in the special orthogonal group SO(3) that diagonalizes 
τ.  That is, 

(159) TRDRτ = , 

where D is the diagonal matrix of eigenvalues of τ.  If the set orthonormal (column) eigenvectors of τ is 
{e1,e2,e3} then the matrix R is composed as follows: 
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The fact that the set {e1,e2,e3} is orthonormal insures that R is a member of the special orthogonal group 
SO(3). 
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From Section 5.2 we see that the matrix R is exactly the rotation that aligns the ellipsoid axes to the 
coordinate system.  The extension to full six-dimensional phase space rotation is straightforward.  Because 
of the Euclidean nature of ℜ6 the tangent planes corresponding to the momentum space (x’,y’,z’) get rotated 
by the same angle and axis as does the configuration space (x,y,z).  This action in homogeneous coordinates 
is continues through since there is no translation.  Consequently, the proper rotation R in homogeneous 
phase space coordinates z=(x,x’,y,y’,z,z’,1) is given by  

(161) 
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The proper space charge kick for an ellipsoid in general position is found by rotating phase space by R, 
applying the momentum in the aligned coordinates, then rotating back by RT.  Thus, if we replace the 
transfer matrix Φsc with RTΦscR we can treat arbitrarily oriented beam ellipsoids. 

7.4. Equations for Centroid Motion 
We find the equations that propagate the mean value vector simply by taking the moment of Eq. (147) 

for the full phase coordinate vector zn.  Since the transfer matrix Φn does not depend upon the phase space 
coordinates, we get 

(162) nn1n zΦz =+ , 

or 

(163) nn1n zΦz =+ , 

where  

(164) )( nszzn ≡ , 

the value sn being the location of the entrance to the nth beamline element.  Recall that there are no space 
charge effects for centroid motion.  Therefore, we do not apply any space charge kicks when propagating 
these moments.  We simply multiply nz by the transfer matrix Φn for each element n in the beam line. 

7.5. Equations for the Second-Order Moments 
For simplicity, once again consider only the x phase plane.  The continuous evolution equation for σxx 

can be found by direct differentiation of σxx with respect to s, then applying Liouville's theorem and Eq. 
(141).  From the definition of σxx we find 

(165) 
T

xxxx
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AxxxxΑ

xxxxσ

+=
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The solution to this matrix differential equation is given (formally) by 

(166) )()0()()( sss T
xxxx ΦσΦσ = , 

where Φ(s) is the fundamental matrix solution of Eq. (144), and σxx(0) is the initial covariance matrix for 
the x plane.  (This fact may be checked by direct differentiation.)  The above equation also holds for the 
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entire set of second moment σ when using the fully augmented fundamental matrix Φ(s).  Recalling that the 
transfer matrix for an element is found by evaluating the fundamental matrix at the end of the element (i.e., 
Φn=Φ(ln), where ln is the length of the nth element) leads to the following transfer equation for the second-
order moments: 

(167) T
nnn1n ΦσΦσ =+ , 

where 

(168) )( nsσσn ≡ . 

We see that advancing the state of the second-order moments through the nth beamline element is 
accomplished by transpose conjugation of σ with the transfer matrix Φn.  However, we must still include 
the effects of space charge. 

Space charge effects are imposed using a transfer equation analogous to (167).  However, here we 
conjugate σ with the space charge transfer matrix Φsc.  Recall that the space charge transfer matrix Φsc is  a 
function of the covariance matrix σ. Therefore, for accurate simulation of long beamline elements it may be 
necessary to split the beamline element into several subsections, applying the space charge kick after each 
subsection.  Specifically, we advance σ by the transfer matrix for a subsection, conjugate by Φsc, and repeat 
until we are through the element. 

7.6. Extensions to the Inhomogeneous Case 
In some particle beam situations the modeling equations are inhomogeneous, that is, they contain a 

forcing term.  For beamline elements, this is the case for dipole magnets, for example when used as beam 
steering magnets (for example, see Appendix A.3 ).  Many control systems also have modeling equations of 
this type.  Let the transfer equations for an inhomogeneous element be given as 

(169) nnnn1n uΓzΦz +=+  

where zn is the 6×1 column vector of phase space coordinates, Φn is the 6×6 transfer matrix, Γn is a 6xM 
matrix, and un is a column vector of length M.  Note that this is still a linear system (in zn and un) only now 
we have a forcing term driven by un.  The vector un represents some external parameters for the element, 
perhaps a control parameter or perhaps an unknown noise source (in this case un would be a random 
variable). 

We can compute the propagation equations for σn simply by unwinding the definition and using the 
above transfer equation.  We get 
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where  

(171) 
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,
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uuΥ
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≡
 

The 6×M matrix Χn is the cross-correlation matrix between the phase-space coordinates and the input 
vector.  The M×M symmetric matrix Υn is the covariance matrix of the drive vector.  Note that if un is a 
scalar value, say un, then Χn= znu  and Υn=un

2. 

The matrix Γn is given by the structure of the system, representing coupling between the particle state 
and the external drive source un.  Thus, to use the above transfer equations for σn it is necessary to 
determine Xn and Yn.  Typically Xn is zero, it represents the correlation between the drive vector un and the 
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coordinates in phase space z.  Most systems are designed to avoid any such correlations.  When un is a 
random variable (representing noise or other unknown), the matrix Yn is the autocorrelation.  For most 
systems it can be determined, at least approximately, through measurement.  When un is deterministic, Yn 
is essentially just un squared, which is easily determined. 

7.7. Homogeneous Coordinates 
Here we again consider inhomogeneous systems, however, now we assume the special form 

(172) nnn1n uzΦz +=+ , 

where un∈ℜ6 is the external drive vector.  That is, the external driving forces can be described as a vector 
in phase space.  This situation occurs when the effects of an inhomogeneous element behave as translations 
in phase space, such as those produced by an ideal dipole magnet.  In this situation we can form a 
convenient augmented state variable system that has the same form as the homogeneous transfer equations.   

Mathematicians typically use homogeneous coordinates to parameterize the projective spaces Pn.  They 
are also widely used in computer graphics for three-dimensional rendering, since translation, rotation, and 
scaling can all be performed by matrix multiplication [20].  The n-dimensional real projective space ℜPn 
can be described as a set equivalence relations [x0, …, xn] on ℜn+1 where [x0, …, xn]~[wx0, …, wxn] for all 
real w≠0, and such that not all the xi are zero.  Thus, the points of the project space ℜPn are seen to be the 
lines in ℜn+1 that pass through the origin.  These equivalence classes are known as the homogeneous 
coordinates of the projective spaces.  (Another equivalent description of the projective space ℜPn is found 
by identifying all the antipodal points of the sphere Sn.)  The projective space ℜPn can be considered a 
differentiable manifold with the atlas consisting of n+1 charts {Ui,φi}i=0

n where Ui is the set of equivalence 
relations [x0, …, xn] such that xi≠0, and φi:Ui → ℜn is the bijective coordinate map  

(173) )/,ˆ,,/(],,,[: 00 iniinii xxxxxxxx KKaKKφ . 

The caret indicates omission of the coordinate.  Note that the union ∪i=0
nUi covers all of ℜPn.  More aptly, 

note that the coordinates of the n+1 chart consist of the following equivalence relations: 

(174) n
nnni xxxxxx ℜ∈∀= −−−

− ),(]1,,[),,( 101010
1 KKKφ . 

Thus, Ui is seen to be the set of all lines in ℜn+1 passing through the plane {(x0,…,xn)∈ℜn+1⏐xn=1}.  We 
shall use the homogeneous coordinates of this chart. 

Let the augmented phase space coordinate ζ be 

(175) ( )Tzzyyxx 1
1

′′′=⎥
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z
ζ . 

Then system (172) can be written in the form 

(176) nn1n ζΘζ =+ ,  

where the 7×7 matrix θn is defined as the augmented square matrix 

(177) ⎥
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⎤
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⎡
=

10
uΦ

Θ nn
n . 

This is exactly the form of the homogeneous transfer equations.  Therefore, if we only encounter 
inhomogeneous transfer systems of the special form given above, by employing homogeneous coordinates 
we can convert back to homogeneous transfer equations. 

For envelope calculations consider the modified covariance matrix τ formed from the phase space 
vector ζ according to 

(178) Tζζτ ≡ . 
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To simplify the discussion, consider only the x-plane phase space.  In the homogeneous coordinates the x-
plane phase coordinates are given by  

(179) ( )Txx 1
1

′=⎥
⎦

⎤
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≡

x
ξ . 

Thus, the modified x-plane correlation matrix τxx is formed by 
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We see that in the homogeneous phase space coordinates the covariance matrix τ contains the original 
covariance matrix σ plus the mean value vector z .  Moreover, transpose conjugation of the covariance 
matrix τxx by the transfer matrix Θn yields the following augmented system: 
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The upper left block is exactly the covariance transfer equation for the inhomogeneous system (172).  The 
diagonal blocks are the transfer equation, and its transpose, for the mean value vector.  Consequently, both 
the transfer equation for the mean value evolution and the covariance evolution are included in the 
modified transfer system. 

To make the use of homogeneous coordinates more explicit, consider the case of an ideal dipole-
correcting magnet in the x phase plane.  The effect of such a device is to add an impulsive kick in the 
particle momentum of intensity Δx'.  Thus, the modified transfer matrix for the x phase plane would appear 
as 
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The effects of the ideal dipole are found by transpose conjugation of the modified covariance matrix τxx by 
the above transfer matrix; we have 
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We can clearly see the effects of an impulsive kick on the entire beam, both in the centroid behavior and 
the rms envelope behavior. 

8. SUMMARY AND CONCLUSION 
Beam envelope simulation as described here is a computationally inexpensive way to obtain particle 

beam behavior to first order.  Rather than propagating an ensemble of particles then computing the statistics 
to determine the rms beam properties, we propagate the rms beam properties directly.  We have seen that 
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theoretically that this is a valid approach.  However, there are clearly limitations to simulation results 
generated in such a manner.  The techniques described here are intended to give a quick insight into general 
beam behavior and not to be used as a tool for detailed dynamics analysis.  Consequently the simulation 
methods here are appropriate for initial off-line design studies and for on-line model reference control 
applications, where fast real-time response is essential.   

The validity off our analysis typically comes into concern because, by practical considerations, we are 
forced to make some simplifying assumptions to implement the simulation procedures.  The first 
assumption we make is the applicability of Liouville's theorem to form the evolution equations for the 
distribution's moments.  Technically, Liouville's theorem is valid only in 6N dimensional phase space for 
collisionless system, where N is the number of beam particles.  However, it is approximately true whenever 
the collective fields of the beam can be accurately described by smooth functions.  Thus, we have assumed 
that our beam is populous enough, and compact enough for this condition to be true.  Another circumstance 
where this assumption holds is for relatively cold beams.  Both situations assume that the Debye length of 
the beam is small enough so that any particle see mostly collective fields and there are few collision-like 
encounters.  The next critical assumption comes in the form of ellipsoidal symmetry.  That is, we assume 
that the beam exhibits ellipsoidal symmetry in configuration space.  Under this assumption we are able to 
analytically compute the effects of space charge on the moment dynamics.  Unfortunately it is known that 
ellipsoidally symmetric beams are not, in general, stationary beams [24], the only one of this type is the 
KV, or micro-canonical distribution.  Thus, we must assume that our true beam is very close to an 
ellipsoidal one.  Fortunately ellipsoidal beams can accurately represent many laboratory beams. 

The last major assumption is that of linearity.  Specifically, we assume not only that all external forces 
are linear, but also that internal forces (i.e., self forces) are linear.  Consequently any nonlinear effects from 
a beamline element cannot be modeled, for example, fringe fields, higher order field components, etc.  Our 
linear model for the internal fields essentially constitutes the assumption of constant rms emittances.  This 
is true for both the rms envelope equations and the transfer matrix method.  There is no known practical 
method for simulating emittance growth using only beam statistics.  Currently, only full multiple particle 
simulations have this capability.  However, it is possible to assign emittance growths based on analytic 
approximations or a priori knowledge of emittance values.  In the envelope equations we just assign the 
emittance values directly, for the transfer matrix approach we multiply the second-order covariant by the 
growth factor. 
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APPENDIX A: TRANSFER MATRICES FOR COMMON BEAMLINE ELEMENTS 
We describe here the transfer matrices for some beamline elements in common use.  As was done with 

the σ matrix, we decompose a general transfer matrix Φ into 2×2 composite matrices according to the 
following: 

(A.1) 
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In most cases only the block diagonal sub-matrices Φxx, Φyy, and Φzz are nonzero.  Nonzero values of the 
off-diagonal sub-matrices indicate coupling between phase planes. 

Many transfer matrices exhibit a semi-group property.  Specifically, if we denote the transfer matrix of 
an element of length Δs as Φ(Δs), then the transfer matrix for two such elements is Φ(Δs)Φ(Δs).  In general, 
for arbitrary lengths Δs1 and Δs2 we have 

(A.2) )()()( 2121 ssss ΔΔ=Δ+Δ ΦΦΦ . 

A.1  Drift Space 
The transfer matrix Φ for a drift space of length Δs is given in terms of its nonzero diagonal blocks 

(A.3) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
=

10
1

,
10

1
,

10
1 sss

zzyyxx ΦΦΦ , 

where the sub-matrix for the z plane assumes that the coordinates are (z,z').  If the coordinates are (z,Δp/p) 
then the sub-matrix is 
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This transfer matrix has the semi-group property. 

A.2  Quadrupole 
In the case of an ideal quadrupole lens where the forces are linear throughout and the fringe fields are 

negligible, the transfer matrix block diagonals are 
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where Φfoc represents the block diagonal of the focusing plane and Φdef represents the block diagonal of the 
defocusing plane of the quadrupole.  The quantity l is the length of the quadrupole and k is the quadrupole 
focusing strength, it has the values 
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where kmag is the value for a magnetic quadrupole and kesq is the value for an electrostatic quadrupole.  Here 
G is the magnetic field gradient at the beam axis, V0 is the electrostatic electrode potential and a is the 
aperture of the quadrupole. 
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A.3  Dipole Steering Magnet (As a Thin Lens) 
We may treat a dipole magnet as a thin lens by again approximating the time derivative of momentum 

as a finite difference in the equations of motion.  The equation of motion for a particle in a dipole field of 
strength B is 
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where we have assumed the magnetic field is constant throughout the magnet.  Approximating the 
derivative by a finite difference gives us the equations 
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Using the relations Δx'=Δpx/p, Δy'=Δpy/p, Δz'=(1/γ2)Δpz/p, we can form the transfer system 
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where 
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are the cyclotron phase advances in the x and y directions respectively. 

Since the contributions from the phase space coordinates are usually small we can often approximate the 
dipole effect using only the additive term in the above.  Referring to Section 7.6, in this case we have Γ=I 
and  
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A.4  Thick Dipole Magnet  
A thick dipole magnet can be used for beam bending as well as steering.  Here we present the full 

solutions for particle trajectories through constant magnetic fields oriented in the transverse directions.  
These solutions can be computed analytically and put into transfer matrix form.  From the full solutions one 
can derive transfer matrices for dipole magnets having fields directed in only one plane.  Starting from the 
Lorentz forces the differential equations describing the motion are 
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where 
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are the cyclotron frequencies in the x and y directions.  The above equations can be solved to give us the 
transfer matrix  
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where  

(A.16) 22
yxc ωωω += . 

Note that again Γ=I.  Note also that in the limit as Δs→0 the transfer matrix and drive vector approach the 
thin lens approximation but with the drift component. 
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(A.17) 
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A.5  Sector Bending Magnet 
In a sector bending magnet 

the design trajectory is where 
the force from centripetal 
acceleration exactly balances 
the magnetic force, it is an arc 
with radius R0.  To analyze a 
bending magnet we usually 
employ a perturbational 
analysis around the design 
trajectory in cylindrical 
coordinates (r,θ,z).  Figure 6 
demonstrates how we construct 
the beam coordinates (x,y,z) as 
perturbations around the 
synchronous trajectory of r=R0.   

Clearly the bend angle α is 
a parameter of the bending 
magnet.  The radius of 
curvature R0 is also a parameter 
of the bend; along with the 
design energy it determines the 
strength of the magnetic field B0=Bz(R0) on the design trajectory.  However, we also require a third 
parameter, the field index n.  The field index is defined 

(A.18) 
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The field index is simply the normalized derivative of the bending field evaluated at the design radius.  In 
order to provide focusing in both transverse planes it is necessary that the bending field decrease in the 
radial direction.  Kerst and Serber first studied these effects for the betatron [16], they found for focusing in 
both transverse planes it is necessary that 0<n<1.   

To find the transfer matrix for a bending magnet we start with the equations of motion in cylindrical 
coordinates.  Since magnetic fields cannot accelerate, γ is constant.  We also assume that there is no 
magnetic field in the θ direction.  With these considerations the equations of motion are 
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The first-order variation in both magnetic field components Br and Bz can be written in terms of the field 
index n using the fact that ∇×B=0.  We have 
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Figure 6: sector bending magnet 
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(A.20) 
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where we have assumed that Br(z=0)=0 by design.  Now we assume a perturbation around the design 
trajectory according to  

(A.21) 
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where ε<<1 is a dimensionless parameter used to keep track of the order of approximation.  Note that we 
have identified the cylindrical coordinate z with subscript cyl whereas the beam coordinate z is unadorned.  
Note also that the path length parameter s is related to θ by 
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Also we have the convenient physical relations 
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where ωc is the cyclotron frequency. 

The transfer matrix solution to the above linear perturbation is given as follows: 

(A.24) 
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In addition, we also have the off-diagonal blocks 

(A.25) 
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where 
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(A.26) 
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The above description is for a bend in the horizontal plane to the right (positive x direction).  For a bend to 
the left replace Φxz and Φzx by -Φxz and -Φzx, respectively. 

A.6  RF Gap (As a Thin Lens) 
Here we treat the effects of a general RF gap as a thin lens.  The energy gain in the gap ΔW is given in 

terms of the Panofsky equation [25] 

(A.27) φcos0TLqEW =Δ , 

where q is the unit charge, E0 is the longitudinal electric field in the gap, T is the transit time factor (the 
ratio of the energy gained in the RF gap to that of a DC gap of the same field amplitude), and φ is the RF 
phase of the synchronous particle at the center of the gap.  Along with h, the (integer) number of the field 
harmonic, we assume that these are the parameters of the RF gap.   

The electric fields in the gap cause longitudinal focusing and radial defocusing, as well as the change 
in energy.  Here we present the thin lens focusing constants to account for these effects.  The values of x', y' 
and z' tend to decrease with increasing longitudinal momentum simply because they are normalized by this 
quantity.  However, the unnormalized values px, py, and Δp are constant with an increase in longitudinal 
momentum.  Thus, the action of the RF gap is produced by first unnormalizing the momentum components, 
transforming by a thin lens, then normalizing the momentum components with respect to the new, larger 
longitudinal momentum.  For example, for the x phase plane we have 
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where the subscript i refers to quantities with initial energy and the subscript f refers to quantities with the 
final energy.  The following transfer matrix captures this sequence of operations: 
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Likewise, for the other phase planes we have 

(A.30) 
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Note that 
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(A.31) 
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where ER is the rest energy of the beam particle (mc2).  The values of the focusing coefficients are found by 
integrating the electromagnetic fields in the gap.  We have (approximately, for example see [25]) 
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where  
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γβ , are the relativistic parameters evaluated at the average energy 

(A.34) 2/WWW i Δ+= , 

and h is the field harmonic at which the gap is operating. 

If the longitudinal coordinates are given as (z,Δp/p) the corresponding transfer block is then 
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This value may be used to approximate the previous matrix since 22 /γγ  is typically close to unity. 
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APPENDIX B: 2D PHASE SPACE MOMENT CALCULATIONS 
 The moments of a distribution described by Eq. Error! Reference source not found. may be 

computed using a technique similar to that of Dragt et al [9].  Specifically, let 
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The matrix Q is symmetric and positive definite. Thus, there is an R∈SO(2) which diagonalizes Q, say  
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where λ1, λ2 are the eigenvalues of Q.  Note that 
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where the last relation is a property of the Courant-Snyder parameters. With the substitution ζ=RTz and the 
fact that det R=1, we have 
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The above formula can be used to compute all the moments and, thus, the kinematic invariants, in terms of 
the Fk. 
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APPENDIX B: NOTES ON THE SPECIAL ORTHOGONAL GROUPS SO(2) AND SO(3) 
The special orthogonal group in two dimensions, denoted SO(2), is the mathematical group of rotations 

of the plane.  It has the topology of the circle S1 and is the simplest closed Lie group.  It may be represented 
as the circle in the complex plane {eiθ∈|θ∈[0,2π)}, or we may use the matrix representation  
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where SL(2,ℜ) is the special linear group, specifically, the group of 2×2 real matrices with determinant one.  
Note that the matrices R(θ) act on points (x y) of the plane as a counter-clockwise rotation.  We have the 
group behavior R(θ1)R(θ2)=R(θ1+θ2 mod 2π) so that SO(2) is seen to be a one-parameter group.  From the 
form of the R(θ) we also see that R(−θ)=RT(θ)=R−1(θ).  The generator of this group is the matrix 
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so that any matrix R(θ)∈SO(2) is generated  according to 
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Note that the matrix L∈SL(2,ℜ) has similar properties to the imaginary unit i of the complex numbers , 

specifically, L2=−1. 
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M  may be diagonalized through conjugation by some element 

R(θ) of SO(2).  It is straightforward to determine θ in this case.  Consider the following: 
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By choosing 

(B.5) 
γβ
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−
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2
1 1 , 

the off-diagonal elements of the above matrix become zero thus diagonalizing M.   

The special orthogonal group in three dimensions, SO(3), is the group of rigid-body rotations in 
Euclidean three-space.  It can be represented by the set of 3×3 matrices, with determinant one, which 
preserve the Euclidean inner product in ℜ3.  That is, 

(B.6) { }1)det(,|),3()3( ==ℜ∈= M1MMM TGLSO . 

From the matrix form of R(θ) above, we can immediately identify three special one-parameter subgroups 
of SO(3).  Namely, they are the sets of counter-clockwise rotations around the x,y,z coordinate axes, which 
we denote Rx(α), Ry(β), Rz(γ), respectively.  They are 
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(B.7) 
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where α,β,γ∈[0,2π).  Although SO(3) is a three-parameter group and the set 
{Rx(α),Ry(β),Rz(γ)|α,β,γ∈[0,2π)} spans SO(3) [21], the above matrices are not independent.  To see this 
note that Rx(θ)=Ry(−π/2)Rz(θ)Ry(π/2).  That is, a rotation θ about the x axis can be generated by a 
backward quarter-rotation about the y axis, a rotation θ about the z axis, followed by a forward quarter-
rotation about the y axis. 

The generators of the above one-parameter groups are 
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xR αα e=)( , yL

yR ββ e=)( , and zL
zR γγ e=)( .  
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APPENDIX C: SELF-FIELD MOMENT CALCULATION 
We shall calculate the moment 〈zEz〉.  The other field moments follow a similar procedure.   
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Substituting the value for potential φ from Eq. (107) we have 
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Since the integrations are independent we may switch the order so the integration with respect to t is last.  
Now employ the change of coordinates 
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along with the appropriate limits of integration to yield 
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where the function u(θ,φ) is defined 
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We now switch the order of integration again and apply the substitution 
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where we have integrated out the distribution dependence. 
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Note that the function u(θ,φ) can be written 
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Using this decomposition and the fact that 
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If we employ the substitution 
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we find that 
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where RD is the Carlson elliptic integral of the second kind. 
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