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The design of a particle beam simulation system for accelerator applications is presented from a 
software architectural standpoint.  We are concerned with the structure of the software system and 
not the details of the physics and algorithms used within the system.  However, most of the 
structural components and relationships are formulated directly from the physical problem 
domain.  Techniques and technologies that enhance the robustness and upgradability of software 
are presented with specific attention to particle beam simulation.  With these techniques, the 
architecture of a highly adaptable and easily maintained software simulation system is presented. 

 

1 Introduction 
In the current state of the art, software design and development differs very little from 
hardware design and development.  Large software systems should be modular, 
consistent, easy to upgrade and based on accepted standards.  In order to meet these 
criteria and the constantly changing requirement of the user, the architecture of large 
software systems deserves explicit concern.  Here we cover the basic issues in the 
development of particle beam simulators from this architectural viewpoint.  We point out 
the tried and true characteristics of well-designed systems and how to conform to these 
standards when implementing particle-beam simulators.  We also discuss available 
software techniques and technologies that enable construction of robust software and how 
the accelerator community can exploit these resources. 

1.1 Programming Paradigms 
Typically, beam simulation codes are designed from an algorithmic, or procedural, 
perspective. This is the traditional paradigm for implementing software before the advent 
of object-oriented technology.  In the algorithmic environment, the foundation is the 
procedure, or subroutine.  The focus of the developers is thus on algorithms and program 
control.  The data and algorithms are distinct entities and it is necessary to control which 
algorithms operate on which data and in what order.  Although there is nothing inherently 
wrong with this design paradigm, it typically yields brittle code.  When requirements 
change, and they always do, or when the system grows, and it always does, software built 
on this paradigm is very difficult to maintain.  The choice of modeling perspective has a 
profound influence upon how the problem is attacked and the solution is formulated [2]. 
Modern software development is based upon an object-oriented perspective.  The 
fundamental building block is the object.  A software object is a code component that 
implements some abstraction from the problem domain or solution domain.  Every object 
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has an identity (it can be uniquely identified), a state (an associated data set) and a 
behavior (it presents a set of operations on itself or other objects).  These fundamental 
properties are necessary to make the software object consistent in form with a hardware 
object.  We shall elucidate these notations further in the sequel. 

1.2 Software Architecture and Development 
As a whole, a large software system should consist of independent components that fit 
together nicely to form the whole.  Individual components should have well-defined 
interfaces so that options or upgrades may be “plugged in” when so desired.  A good 
analogy for this idea is the hardware design of a computer.  If a computer requires a 
larger hard drive, it is simply connected to the appropriate internal interface perhaps 
replacing an old one.  The hard drive is an autonomous component having a well-defined 
interface and protocol by which it communicates.  For persons responsible for 
maintaining the computer, upon removing the cover it is easy to identify the individual 
components and also to replace and upgrade them.  Likewise for the software system, 
responsible persons (i.e., developers) would prefer a similar situation. 
On the lower level, the design philosophy for individual software components has also 
changed tremendously in the past years. The need for “tight code” has all but disappeared 
in favor of clear, concise program code that is easy to understand and maintain [6]. One 
should not code for detailed machine optimizations but, rather, tasks should be performed 
in a manner that is most clear and straightforward.  In most situations it is best to 
“ignore” the physical machine in lieu of an abstract, generalized machine that has no 
specific structure1.  This idea has been taken to the extreme in the Java environment, 
where programs run on a virtual machine that is universal across hardware and operating 
system platforms.  Because hardware technology typically advances much more rapidly 
than software technology, one’s effort is best spent writing clear understandable code 
rather than optimizing code performance.  This is especially true when considering the 
amount of time spent post-production on upgrades and specific user modifications. 
Particle beam simulation system attempt to imitate complicated real-world situations, 
accelerators.  With a rigorous design methodology and a solid foundation such software 
systems can adapt smoothly to evolving design specifications and user demands.  They 
should be designed with extensibility in mind.  There are a number of software tools and 
technologies currently available that facilitate these goals.  For example, object-oriented 
computer languages and component software development tools combine to provide an 
excellent framework for a robust implementation.  The combination produces a software 
design environment that closely parallels that of modern hardware design. 
The investment required for a good software design should not be overlooked.  
Forethought in this phase will produce systems capable of adapting naturally to changing 
requirements. 

                                                
1 Obviously this philosophy does not apply when developing for specialized machines such as Blue 
Mountain.  However, even for these machines Application Program Interfaces (API’s) are now available 
which present the software developer with an abstracted parallel environment (e.g. MPI). 
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2 Software Technology and Particle Beam Simulation 
Here we present some software technologies, both new and old, that warrant particular 
attention to the design and development of particle simulation systems. Although much 
of this technology has been part of the computer scientist’s toolbox for some time, it is 
seldom seen in the accelerator community.  Consequently, we provide a brief overview 
for each technology then demonstrate its application to particle beam simulation. 

2.1 The Unified Modeling Language (UML) 
The Unified Modeling Language (UML) is a recent 
development in the ability to model software systems 
[2].  It is a graphical, systematic method to model and 
represent the architecture and operations of complex 
software.  Like any other language, it has grammar and 
syntax, however, its vocabulary consists of sets of 
associated diagrams.  The diagrams may contain 
varying levels of detail, but all explicitly indicate the 
implementation of a software system built from 
objects.  With the use of the UML, software may be 
designed and tested on paper before any code is 
actually written. Once the architecture of the system is 
agreed upon, the language, productivity tools, and 
platform may then be chosen which best suits the 
implementation. Most all the illustrations in this paper 
are written in the UML. 

The UML provides the “blue prints” for application architectures.  It is programming 
language independent and platform independent.  Thus, like mechanical drawings, the 
UML provides a conceptual model of the application that may be understood by a wide 
audience.  Figure 1 shows the UML representation for a class, or object.  A class is 
represented by a rectangle with three internal compartments.  The first is the class name, 
in our case AnObject, the second contains the attributes, or data, for the class, while the 
third compartment contains the operations of the class.  Also shown in the figure are 
some adornments, in guillemets, to further identify intent.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1: UML class 
representation 

AnObject 
 
<<attributes>> 
myHeight : double 
myWeight : double 
 
<<operations>> 
goToWork() 
goToBed() 
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2.2 Preliminaries: Data Records, Dynamic Allocation, and Pointers 
We introduce some fundamental programming concepts that are independent of 
programming paradigms.  These techniques improve robustness and enhance code clarity. 
Data records are the predecessors of modern day objects.  As the name implies, data 
records contain data (whereas objects contain both data and operations).  Data records 
organize, categorize, and store program data in logical blocks consistent with the problem 
domain.  That is, data is organized into units which “make sense” in the problem domain.  
For example, consider our problem domain of a particle accelerator.  Here, a logical 
organization for particle simulation data would be records containing the phase states of 
the individual particles.  Figure 2 shows the design of a data record called Particle.  We see 
that it consists of eight attributes: the particle’s transverse phase coordinates x, xp, y, yp, 
the particles charge and mass given by chrg and mass, and the particles phase and energy 
given by phi and W.  Also shown in the figure are two implementations of the data 
record, one in FORTRAN and one in C. 

Dynamic allocation is another fundamental tenant of programming.  Instead of reserving 
storage at compile time (before the program runs), it is best to allocate storage 
dynamically as needed.  Storage should be allocated during run time according to the 
application requirements, rather than reserving an arbitrary amount of storage a priori.  In 
this manner the amount of data that can be processed is limited only by the machine and 
not by some arbitrary limit determined at compile time.  If the data set changes set no 
recompilation is necessary.  We simply ask the operating system for more memory 
resources, as we need it.  This idea is illustrated in Excerpt 1, where we implement the 
dynamic allocation of an array of the Particle data records.  We assume the existence of an 

 
Figure 2: Particle data record and implementations 
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unformatted data file, named “Particles.dat”, where the first entry is the number of 
particle records to follow.  Once that value is read, the array of records is allocated, and 
the data is loaded as a block.  After the program is finished with the data array, the 
memory should be released with a DEALLOCATE statement. 

The final fundamental programming concept we cover is that of pointers.  Pointers are 
software entities that point to data in core memory. In particular, they can point to 
dynamically allocated data records.  Thus, program data is managed by accessing it 
through pointers (known as dereferencing) rather than direct declarations of specific data 
records.  Specifically pointers contain memory addresses, however, one may loosely 
consider a pointer as being similar to an array index.  The index i “points” to the ith 
element in the array A; thus, that element is dereferenced using the syntax A(i).  In the 
case of a true pointer, the array would be all of core memory. 

The actual value held by a pointer is the machine address of a memory location.  This 
situation is depicted in Figure 3.  Thus, the pointer “points” to a location in core memory.  
Although this physical picture is accurate, it is usually better to conceptualize the pointer 
as pointing to a “data object” that exists in the process domain of the program.  This idea 
is also shown in the figure.  The later viewpoint is that of the object-oriented paradigm 
and leads naturally to the notion of a software object.  Finally, we make the aside remark 
that for security reasons the Java language environment does not support pointers.  
Instead of pointers Java implements references, which like pointer also provides for 
object indirection, however, core memory is not directly accessible. 

TYPE(Particle), ALLOCATABLE :: arrParticles(:) ! the ensemble data 
INTEGER       :: cntParticles ! number of particles in ensemble 
 
 
! Open file and get number of particle coordinate sets 
OPEN(UNIT=2, STATUS=’OLD’, FORM=’UNFORMATTED’, FILE=’Particles.dat’) 
READ(2, *) cntParticles 
 
! Allocate record array and read in coordinates 
ALLOCATE(arrParticles(cntParticles)) 
 
READ(2, *) arrParticles 
CLOSE(2) 
 

Excerpt 1: dynamic allocation with FORTRAN 90 



LA-UR-00-3895 

 6 

Pointers are most often used when building data structures. For example, the array is one 
form of data structure, one where the internal data is referenced via an index.  (In Excerpt 
1 the underlying data structure is an array.)  Other data structures require the use of 
pointers to reference their data records.  In the next section, we discuss several different 
types of data structures.   

2.3 Data Structures 
Traditionally, one of the basic concerns of computer science is the study of data 
structures.  Here one considers the form of the program data along with its primary 
method of storage and access.  Proper choice of data structures will greatly improve 
program clarity and manageability; moreover, using the proper data structure has the 
potential to drastically improve program performance.  Depending upon the application, 
data structures can be very sophisticated.  Typically, however, most programs require 
only a few fundamental data structures. 

 
Figure 3: pointers 
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We are primarily interested in data structures that contain instances of basic data records, 
in our case the Particle record.  These structures are usually referred to as collections or 
containers.  For example, consider the linked list depicted in Figure 4.  There we see one 
possible container for an ensemble of particles.  As before, each data record contains the 
position, velocity, charge and mass of a particle object.  In addition, however, the data 
record must also maintains a pointer to the next particle record in the list.  All the particle 
records are thus linked together forming a chain, or list, of data records.  The linked-list 
container is convenient in that it is not necessary to know a priori the number of elements 
the list will contain.  Typically, new records are pushed onto the head or tail of the list.  
To iterate through the list, we simply follow the trail of pointers, stopping once the NULL 
value is encountered. 

Not only can data records be allocated and added to the list dynamically, but they can 
also be deallocated dynamically.  This is convenient whenever a particle is lost (e.g., it 

hits a structure in the beamline).  If the particle is lost during a simulation, it is simply 
removed from the list and its memory resources are returned to core memory.  If the 
ensemble were to be stored as an array, as typically done in FORTRAN programs, the 
index of the lost particle must somehow be flagged as lost, or the entire array must be 
repacked.  This condition indicates that the array is not the natural data structure for the 
ensemble.  To further this point, note that typically in particle simulations we only iterate 
through the particles in an ensemble.  The array index is used only as a tool for iterating 
through the collection; it does not belong to the problem domain. 

 
Figure 4: linked list particle ensemble 
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2.4 Object-Oriented Programming 
In the past ten years, there has been a lot of attention and emphasis on object-oriented 
programming, which has all but lived up to its early expectations.  It did not revolutionize 
code reusability, nor did it revolutionize software packaging, distribution and installation, 
as expected.  However, it did completely change the way the industry views software 
design and modeling paradigms.  It gives architects and developers a way to create 
software systems that mimic modern hardware systems.  In this way the development of 
object-oriented programming can be compared to the discovery of penicillin.  The new 
medicine was initially considered a miracle drug and generated copious publicity.  
However, as we now know the discovery really signified a new, and more fruitful, 
approach to the treatment and control of infection.  By moving from a procedural design 
paradigm to an object-oriented one, the ability to maintain and upgrade existing 
application is drastically improved. 

2.4.1 The Object 
Object-oriented programming allows for the realization of abstractions that occur 
naturally in the problem domain.  In our case it makes sense to implement objects 
representing particles, ion sources, quadrupole magnets, diagnostic equipment, etc.  The 

software object makes it possible to implement an accelerator simulator in much the same 
way we view the actual accelerator.  This situation is extremely useful when code 
development and upgrades are implemented by a group of developers with an accelerator 
background. 

Software objects have both attributes (data contained in the object) and operations 
(functions or procedures which may be called by internal and/or external events).  This 

 
Figure 5: data records versus software objects 
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gives the object the ability to exhibit identity, states and/or conditions, and behavior; a 
situation that is analogous to physical objects.  From a language perspective, objects are 
essentially the progeny of data records.  Within the data record, adding functions, as well 
as data, yields the object language-construct.  The functions contained in the record are 
intrinsically aware of the data contained therein.  Thus, the scoping of data is simplified; 
functions already know on which data they are to operate. 

For us the most important aspect of object-oriented programming is the ability to create 
and support objects that have meaning to accelerator physics.  This idea is illustrated in 
Figure 5, where we reconsider our Particle data record.  The procedural approach and 
object-oriented approach are contrasted by implementing the record in both C 
(procedural) and C++ (object-oriented).  In C, it is possible to create new data types from 
data records using the typedef keyword.  However, the records contain only data, and no 
operations on the internal data.  As seen in the figure, functions are separate entities and 
must be told explicitly on which data to operate. A true object contains both data and 
operations on the data.  C++ adds language support for objects with the keyword class so 
that both data and functions may be included in the record, forming the complete object.  

The additional capability of object-oriented languages may not seem significant at first; it 
is certainly possible to accomplish required tasks without it.  However, the resulting 
design environment has now changed tremendously.  Now we can create useful new data 
types, such as complex numbers, vectors, matrices, tensors, etc.  Moreover, we can build 
objects with physical significance, such as particle ensembles, ion sources, drift-tube 
linacs, signal processors and diagnostic equipment.  Moreover, these objects may be 
implemented in much the same way hardware is implemented.  For example, consider the 

 
Figure 6: object abstraction 
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situation shown in Figure 6 where a piece of real-world hardware, a wire scanner is being 
modeled.  The wire scanner has input (the beam), a state control parameter (the wire 
positions), and output (the beam profile intensity). (Obviously there is more detail to 
consider, yet, these properties capture the essence of the object.)  Referring to the 
software implementation, the object presents itself in much the same way as we view the 
actual hardware.  It has state attributes, the current position of the wires, and it gives us 
an interface in which to move the wire positions and collect the intensity data.  Notice 
that the specifics of the implementation are not shown in either case.  As users of this 
object, we are unconcerned with these details and should not be burdened with them.  
That task falls solely upon the developers of the object, both hardware and software.  
Once developed, the object is a self-contained entity presenting a clear picture of its 
intended use. 

2.4.2 Objects as Language Extensions 
Another advantage of an object-oriented language is that is essentially supports its own 
extensibility.  It enables the creation of software objects and allows them to be treated as 
ordinary language constructs.  To illustrate, consider the  (procedural) programming 
language C.  It contains the following list of intrinsic data types (or atoms: bool, char, int, 
unsigned, float, double.  Because these types are intrinsic to the language, the language also 
supports the usual compliment of operations 
on each data type.  We can add int’s, subtract 
int’s and multiply int’s using the respective 
operators +, -, and * provided by the language.  
The operators recognize the data type and 
understand how to perform their respective 
operations.  Thus the system (int; +,-,*) is 
complete and closed, forming the data type int. 
This notion of a set of elements and all its 
operations is exactly the paradigm that object-
oriented programming languages embody.   

A familiar object example might come from 
the addition of vectors.  The C++ language 
includes the ability to redefine (or overload) 
the operators +, - and * on objects.  Thus, we 
can create vector objects that are used 
syntactically just as the intrinsic scalar data 
types.  Obviously, this has a clear advantage 
in terms of program clarity, a very important quality when debugging or working with 
code written by other developers.  The idea is illustrated Excerpt 2, where we define 
objects of type R3, representing real 3-vectors (the type definition Real is meant to enforce 
this notion).  The excerpt also illustrates how to add two vectors to obtain a third.  This 
object is very convenient for working with position vectors in Euclidean space.  

typedef  double Real; 
 
class R3 { 

Real x, y, z; // coordinates 
 
// Assignment 
R3 operator=(R3 vec); 
 
// Vector algebraic operations 
R3 operator+(R3 vec); 
R3 operator-(R3 vec); 
R3 operator*(Real scalar); 

}; 
 
 
R3 ptA, ptB, ptC; // 3 points 
 
ptA = ptB + ptC; 
 

Excerpt 2: vector algebra in C++ 
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2.4.3 Collection Iterators 
Finally, we present another construction possible with object-oriented programming, that 
of a collection iterator.  An iterator is used to iterate through collections of objects in a 
container-type data structure.  The iterator understands the container structure and its 
access, yet presents a “formless” view of the container to the outside environment.  If the 
fundamental structure of the container is changed, accessing elements remains consistent.  
Only the iterator must be modified.  

In reality iterators typically understand how to access elements of several different types 
of containers.  Thus, the elements may actually be contained in many different data 
structures but the iterator presents a consistent method for accessing them.  This idea is 
demonstrated in Figure 7 depicting an iterator for particle-ensemble data structures.  
There we see that Particle objects are contained in two different types of data structures, a 
linked-list and a tree (yet to be discussed).  The iterator ParticleIter maintains a consistent 
way of accessing elements regardless of the underlying container structure.  The iterator 
ParticleIter has three operations, Reset(), GetNext(), and IsValid().  These functions reset the 
iterator to the (arbitrary) first element, retrieve the next element, and check whether we 
have reached the last element in the container.  The job of the iterator is to provide access 
to every element in the container.  It hides all structural properties of the container. 

We point out that the current Standard C++ Library, std, has a variety of container classes 
capable of maintaining user-defined objects.  These containers include vectors, lists, 
stacks, and maps.  Yet, all these different data structures may be accessed using the class 
iterator, also in the library.  The situation provides a quick and convenient method for 
making performance modifications.  It may be that for a particular situation one type of 

Figure 7: using an iterator for container access 
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data structure provides faster iteration than for others.  When that case occurs, simply 
switch the underlying container.  This action can be done at run time. 

2.5 Software Interfaces 
Presenting a consistent method of communication leads to the notion of a software 
interface, or simply, interface.  Iterators embody this idea.  The iterator presents a 
consistent method of accessing containers; structure is irrelevant as far as the user is 
concerned.  A software interface is a technique to strictly enforce such consistency within 
the software domain. That is, they present the capability of establishing well-defined 
methods of communication between software components.  They represent a contract 
between software objects.  Any object that supports an interface agrees to provide that 
communication schema to other components, forever.  Software interfaces are analogous 
to hardware interfaces, such as PCI card slots, RS232 ports, BNS connectors, and 
standardized telephone jacks.  For example, any telephone presenting a standard jack 
knows how to communicate with the PBX.  

Structurally, interfaces are similar to objects in that they contain functions.  However, 
they do not contain data.  Therefore, they have no state or condition.  They are simply 
meant as a means of communication between objects.  An example interface IParticleIterate 
is shown in Figure 7.  The structure of the interface is shown in the right hand side of the 
figure, while inspecting the iterator ParticleIter we see that it actually exposes this interface.  
The interface contains three member functions the ParticleIter objects needs to do its job.  
This example may seem somewhat trite at first, however, later we shall see that this is a 
mechanism for building software components discussed in the sequel.   
Interfaces are also intended to enforce general situations.  Many different types of objects 
can provide the same interface.  For example, we can create a Quadrupole object used to 
focus ensembles of Particle objects.  Although very different from a Particle object, both 
have electromagnetic properties. Thus, both may present the same interface used to 
display electromagnetic behavior, say IEmFields.  Be aware, however, the interface is 
similar to, but not the same as, object inheritance.  Unlike an object, once it is defined an 
interface should never change.  Just as with hardware interfaces, this static condition is 
necessary to maintain backward compatibility.  Consequently, the design of a software 
interface warrants careful consideration.  If in the future it becomes necessary to upgrade 
an interface, than a completely new interface should be specified.  For example, to 
upgrade the interface IEmFields we must also move to a completely new identifier, such as 
IEmFields2.  This parallels the hardware interface upgrades seen in industry, like moving 
from SCSI to Wide SCSI, and then to Ultra Wide SCSI. 
Before moving on, we point out two modern software technologies built primarily on the 
software interface.  The JavaBeans™ of the Java environment is a component 
architecture built from prescribed interfaces [7].  Objects that conform to these interfaces 
are known as Java Beans.  Java Beans are thus self-contained software components that 
may be invoked, inspected and run by applications without prior compilation.  That is, 
they automatically fit into applications understanding the JavaBeans architecture.  
Microsoft’s COM (for Component Object Model) software technology is now the basis 
for much of the Windows operating system and is entirely based on the concept of 
interfaces [8].  For example, all ActiveX™ components perform basic communication via 
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a set of pre-defined interfaces [3].  The particular behavior of an ActiveX component is 
defined by an additional set of interfaces that ship with the object.  Typically, ActiveX 
components also provide a special interface that allows any outside software system to 
determine the component’s operation and use it at run time (this capability is known as 
automation).  A nice feature of the COM standard is that it is language independent. 
Thus, software may be written in the language best suited to the application.  The 
drawback of COM is that it is currently available only on MS Windows platforms.  The 
JavaBeans technology is platform independent.  However, Java Bean components must 
be written in the Java language. 

2.6 Software Components 
Software applications originally consisted of a single, monolithic, binary file.  If changes 
to the application where required, the source code was updated then recompiled into the 
new binary file.  The entire application had to be rebuilt and redistributed.  Application 
users had to wait for developers to modify, compile, and reship the newest version.  This 
process is painfully slow and costly considering the advancing pace of current software 
technology.  To offer an analogy, suppose you wished to upgrade the sound system in 
your automobile.  If you owned a monolithic car then the only possible option would be 
to sell the old car and purchase the latest model, in the hopes that the manufacturer 
included a better sound system.  Obviously this is a drastic action, as it is with large, 
sophisticated software systems. 

Software components provide a modular architecture for software systems.  They allow 
for on-site modifications and upgrades as well as providing better reliability and lower 
costs.  If an upgrade for a software system is desired, one need only acquire the specific 

 
Figure 8: component application versus monolithic application 
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component, which may even be provided by third party vendors. Moreover, component 
systems can be tailored toward individual needs.  These ideas are represented graphically 
in Figure 8.  The situation is again analogous to purchasing a new sound system for your 
automobile.  Typically, you can find high quality, after-market systems from third party 
manufacturers much cheaper than from the car’s original equipment manufacturer 
(OEM).  Moreover, users can upgrade the system on-site.  

Software interfaces are the instrument by which component software systems are 
assembled.  Interfaces are static entities and any component providing a specific interface 
will always be able to connect to a software system supporting that interface.  The 
implementation details are irrelevant as far as the system is concerned, and the operation 
and task of the total system is unknown to the component.  Also, the component may be 
upgraded or modified at any time without disrupting the total system, so long as 
everything abides by the interface. 

Recently, there has been an explosion of third party vendors for software components.  
As a consequence, there are a wide variety of system components available at low cost.  
This is especially true for ActiveX™ controls, which are very convenient and popular 
forms of software components for MS Windows platforms.  Using a Rapid Application 
Development (RAD) tool such as Visual Basic, complex software systems can be built 
quickly and easily from ActiveX controls.  Currently there exist off-the-shelf ActiveX 
controls for signal analysis, data acquisition, hardware control, scientific visualization, 
and more.    

As an example of rapid application development from components, we refer to Figure 9.  
This is a picture of the Visual Basic™ RAD environment.  As seen in the figure, we have 
a palette from which we may select software components, using point and click on the 
icons, then drag and drop them into the application.  The GUI (Graphical User Interface) 

drag and drop Palette of
software components

GUI form builder

component properties list

 
Figure 9: Visual Basic RAD environment 
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of the application is built up from individual forms that allow the user to modify the 
system parameters.  There is a drag-and-drop form builder from which to build up this 
interface using edit boxes, list boxes, buttons, switches, and other components that allow 
the user point and click interaction with the system.  The forms may also contain charts, 
spreadsheets, or other methods of data visualization, these features being dependent upon 
whatever software components the developer has available to him or her.  Creation of the 
application is primarily a drag and drop operation with a minimal amount of coding.   

2.7 Visualization 
Visualization has become an important research tool in recent years.  This is a technology 
where beam simulation can find rich application.  Accelerator physicists must contend 
with enormous data sets; graphical representations of the data are a convenient way to 
cope with this fact.  The various forms of visual inspection may elucidate patterns and 
correlation in data sets not otherwise discovered. 

There have been significant advances in visualization capabilities, both in hardware and 
in software.  For three dimensional visualization and animation, the low-level graphics 
library OpenGL has become an industry standard [11].  It was originally developed by 
Silicon Graphics Incorporated (SGI) is now available on most platforms, including MS 
Windows and Linux.  Most high-level visualization libraries and applications are now 
built on top of OpenGL.  This graphics library is designed to recognize and use any 
specialized graphics hardware on the host platform.  Other, high-level, visualization 
libraries built over OpenGL include OpenInventor (also by SGI) and the Visualization 
Toolkit (VTK) [10]. 

Figure 10: visualization and animation of simulation using OpenGL 
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Figure 10 shows one frame in a three-dimensional dynamics animation of a particle 
simulation using the OpenGL graphics library.  In the figure, two bunches can be seen 
travelling through a periodic lattice, one magnet is visible.  The particles in the beam are 
color-mapped: red particles have large transverse velocities, blue particles have small 
transverse velocities and white ones have moderate velocities. 
For visualization using plots and charts there are a number of stand-alone applications 
that take raw data sets and produce graphs.  These include applications such as Excel, 
Axum, and PsiPlot as well as programming and data environments such as Mathematica 
and Matlab.  Existing component graphing packages may be utilized in RAD 
environments.  One of the more popular packages is Olectra Chart, which ships as a set of 
ActiveX components.  For creating static three-dimensional models there are a number of 
applications that employ the Virtual Reality Markup Language (VRML).  This is a 
standardized language for describing three-dimensional scenes based on the notion of a 
scene graph. 

3 An Architecture for Particle Beam Simulation 
This section describes a possible architecture for a particle beam simulation system based 
on all the software techniques and technologies discussed previously.  It is a system built 
on components communicating through interfaces.  Each component is also designed 
according to similar principles.  That is, they are as modular as possible with distinct sub-
components and internal interfaces.  
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3.1 The Ensemble Container 
We have already considered two possible structures for the container of particle objects, 
the array and the linked list.  We have also mentioned that the array is not a particularly 
good choice, we prefer a container where particles can be added and removed without 
repairing the data structure.  In this section, we discuss tree-type data structure, since 
their structure can be exploited in the space-charge calculations of particle beam 
simulations. 
A possible implementation for a particle ensemble is a tree data structure.  Figure 11 
shows a particle ensemble implemented as a binary tree.  In a binary tree, each data 
record is a node in the tree.  Each node maintains pointers to two child nodes (right and 
left, for example).  These child nodes contain, in turn, children of their own.  Branches 
that contain no data are terminated with a null pointer.  In this case, the data record is 
very similar to that of the linked list, with the addition of an extra pointer.  Note, 
however, from the figures that the two topologies are very different.   

The binary-tree data structure has a self-similar topology.  Such situations are highly 
suited to recursive iteration.  For example, the entire tree could be searched with a single 
call to a recursive function such as that listed in Excerpt 3.  In the code excerpt the 
boolean function TestFunc() is a function that returns true when called on the target particle.  
The recursive function TreeSearch() checks for this condition on each particle record, 
returning the particle if it passes TestFunc().  If the test fails, TreeSearch() uses recursion by 
calling itself on the left branch then the right branch.  If the result of one of these calls is 
a Particle record, it is the desired particle. This particle is passed up the calling chain to the 

 
Figure 11: binary-tree particle ensemble 
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original function call.  Thus, to start the tree search, one need only call TreeSearch() on the 
root node of the tree. 
Tree structures already have 
had success in particle 
simulations.  Using an 
appropriately structured tree, 
the number of space charge 
calculations has been reduced 
from N2 to NlogN [5].  This 
feat uses the fact that particle 
dynamics depend upon the 
detailed field structure only 
for nearby particles.  Particles 
more distant than the Debye 
length create the so-called 
“collective fields”.  (Particle-
In-Cell codes only use this 
collective field, typically they 
do not consider the Coulomb 
collisions from nearby 
particles.)  To exploit this 
physical feature, tree codes create data structures where a nearby node represents a 
nearby particle.  The more distant two particles are in Euclidean space, the more distant 
they are in the tree structure.  Thus, for remote nodes (particles) it is only necessary to 
consider their collective field.   

 
Particle* TreeSearch(Particle* ptrNode) 
{ 
 Particle*  ptrChild;   /* child node ptr */ 
 
/* Check if current particle (ptrNode) is desired particle */ 
 if ( true == TestFunc(ptrNode) ) return ptrNode; 
 
 /* Does the left branch contain the desired particle? */ 
 ptrChild = TreeSearch(ptrNode->ptrLeft); 
 if (ptrLeft != NULL) return ptrChild; 
 
 /* Does the right branch contain the desired particle? */ 
 ptrChild = TreeSearch(ptrNode->ptrRight); 
 if (ptrRight != NULL) return ptrChild; 
 
/* Desired particle was not found underneath this node */ 
 return NULL; 
}; 
 

Excerpt 3: binary tree search algorithm in C 
 
 

 
Figure 12: tree structure for particle tree code 
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Figure 12 depicts the structure of a typical tree used in particle simulation.  This tree is 
different from the binary tree in that nodes may have multiple branches (rather than just 
two - implemented possibly with a linked list).  In addition, particle records are stored 
only on the terminal nodes of the tree (called the tree leaves).  The tree is constructed so 
adjacent particles are children of the same node.  As one moves up the tree (from the 
leaves) the particle sets underneath the nodes become increasingly distant.  After the tree 
is constructed, one computes the center of mass for a node and all its children (subset of 
particles).  When determining the effects from distant particle clusters one assumes the 
field of one macro particle, positioned at the center of mass and having the aggregate 
charge.  If more field structure is required from the clusters then one may also add in the 
fields of the dipole moment, quadrupole moment, etc.  Obviously, the difficult part here 
is building the data structure.  Once that is accomplished, the space charge computations 
are more-or-less trivial. 

3.2 Interfaces  
Here we lay out some of the important interfaces needed to assemble the components of 
the particle beam simulator. Since the components of a well-designed software system all 
use interfaces to communicate, they represent the glue that holds the application together.  
As already mentioned, the design of interfaces requires careful consideration.  Once 
designed, they should never change.   

The schematic of a software interface used for electromagnetic behavior is shown in 
Figure 13.  There we have defined an interface called IEmFields.  This interface is seen to 
consist of three functions, VField(), EField and BField(), each taking an argument of type R3, 
representing a coordinate set in 3-space.  The intent here to enforce the condition that any 

Figure 13: software interface 
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software object with electromagnetic properties must express a potential field, an electric 
field and a magnetic field, respectively.  This situation fits naturally into our notion of a 
physical object that exhibits electromagnetic behavior.  Again, we point out that such 
design considerations are extremely good for maintaining clarity and modularity.  
Referring back to the figure, we have now equipped our Particle object with the IEmFields 
interface.  This action informs the software domain that the Particle object conforms to the 
IEmFields standard for expressing electromagnetic behavior.  Any Particle object must 
present the functions VField(), EField and BField().  Thus, our particles belong to the wide 
category of objects with electromagnetic properties.   
Also shown in the figure are two more objects that exhibit the IEmFields interface, Ensemble 
and FieldsSolver.  Since any ensemble of Particle objects must also have electromagnetic 
properties, the Ensemble object should also present the interface.  The FieldsSolver object 
explicitly solves for electromagnetic fields, therefore conforming to the IEmFields interface 
is natural.  The software component Integrator is shown in the figure to connect to an 
IEmFields interface.  The component computes particle trajectories in the presence of an 
electromagnetic field.  To the integrator, the source of the fields is irrelevant.  The 
computations are carried out in the same manner irrespective.  Thus, the trajectory 
calculations are not bound to any particular source of electromagnetic fields.  The source 
may be an Ensemble object, a FieldsSolver object, or simply a Particle object.  As long as an 
electromagnetic source presents the IEmFields interface, the Integrator component can 
compute trajectories.  Note that in an accelerator simulation system, the object FieldsSolver 
might implement a particle-in-cell solution to the electromagnetic fields of an Ensemble 
object.  In this case, the Ensemble object would actually support its IEmFields interface 
using a FieldsSolver object! 

Some computer languages, such as Java, provide direct support for software interfaces.  
For others, such as C++, interfaces can be enforced through appropriate constructs.  
Excerpt 5 shows a Java implementation for the IEmFields interface.  Notice in the class 

interface IEmFields { 
 Real VField(R3 pt, Real t); 
 R3 EField(R3 pt, Real t); 
 R3 BField(R3 pt, Real t); 
}; 
 
 
class Particle implements IEmFields { 
    private Real m,q; 
    private Real x,y,z; 
    private Real xp,yp,zp; 
 
  public Real VField(R3 pt, Real t) 
  { 
   
  }; 
 
  
}; 
 
 
 
 

Excerpt 5: Java IEmFields interface 

class IEmFields { 
 Real VField(R3& pt, Real t) = 0; 
 R3 EField(R3& pt, Real t) = 0; 
 R3 BField(R3& pt, Real t) = 0; 
}; 
 
class Particle : public IEmFields { 
    private:  

Real m,q; 
 Real x,y,z; 
 Real xp,yp,zp; 
    public:  

Real VField(R3& pt, Real t); 
R3 EField(R3& pt, Real t); 

 R3 BField(R3& pt, Real t); 
}; 
 
Real Particle::Vfield(R3& pt,  
                      Real t) 
{ 
     
}; 
 

Excerpt 5: C++ IEmFields interface 
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declaration for Particle the implements keyword explicitly enforces implementation of the 
interface.  The three functions of the IEmFields interface are thus guaranteed to be a part of 
the Particle class.  Also in Excerpt 5 we see the C++ implementation of an interface.  The 
interface is defined via an abstract base class (containing only operations) that we 
identify as IEmFields.  The three functions of the interface are made pure virtual (enforced 
by the = 0 qualifier).  Thus, they must be defined in any instantiable subclass of IEmFields.  
For the Particle class, the interface is enforced through inheritance from the abstract base 
IEmFields.  Unfortunately, since IEmFields is actually a class definition and inheritance is 
used to create the interface, it is not explicitly clear that our intent here is to express an 
interface. 

3.3 Components 
The structure of a particle beam simulator naturally conforms to four major components.  
An addition component for data processing and visualization could also be attached via 
proscribed interfaces.  Referring to Figure 14, the major components of the simulator are 
the following: 1) the particle ensemble, 2) the beam line modeler (i.e., the particle source, 
transport and accelerator systems), 3) the field solver and 4) the integrator.  The particle 
ensemble component has been covered previously.  It is some container of Particle objects. 
The beamline modeler is also a container; it contains objects representing beamline 
elements.  The idea here is that the user should be able to create a beam channel by 
selecting and specifying individual beamline elements (preferably using point-and-click 
and/or drag-and-drop).  The beamline elements are represented as software objects.   

The function of the integrator is to advance the particle phase states in time.  From the 
collective fields provided by the field solver component, it computes each particle’s 

Figure 14: beam simulator block diagram 
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position and velocity from the Lorentz force equations or some other method.  This 
component is actually rather small in comparison to the others.  However, it is important 
in that the actual integration methods be separate from the rest of the system.  Since the 
performance of the various integration techniques varies from situation to situation, we 
should be able to plug in different integration modules on the fly (during run time). 
The field solver is traditionally associated with the grid and grid cells of a PIC code, 
where the electromagnetic field values from the particle ensemble are interpolated and/or 
approximated.  Note, however, the actual implementation of the field solver is hidden 
from the rest of the simulation system.  All that is required from this component is the 
electromagnetic field values for any point in space.  Therefore, the fields solver exposes 
the IEmFields interface to the outside world from which to acquire these values.  Yet, 
within the module any form of field calculation is possible, we are not restricted to 
particle-in-cell schemes.   

In Figure 14 it is important to see that the components are connected through the well-
defined interfaces IEmFields and IparticleIterate (see Figure 7).  The only deviation from this 
paradigm is that the integrator component must understand how to modify the 
coordinates of the Particle objects.  In this case, the creation of a new interface may be 
over-engineering.  This is the only place where the Particle object’s data is actually 
accessed and modified (the one exception being a visualization component not shown).  
The Particle class is itself well defined.  Since it will probably never change, relying on a 
consistent Particle object should present no future compatibility problems.  

 
Figure 15: structure of beamline modeler 
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3.4 Components of Components 
The individual components of the simulator are designed using the same philosophy as 
the overall system.  Thus, the software components themselves are built up from software 
components.  As an example, we consider some internal structure of the beamline 
modeler. 
Referring to Figure 15 we see that the beamline modeler component defines internal 
interfaces and has components of its own.  The interface IBLElement specifies the common 
properties associated with all elements in a beamline.  In the figure, we see that this 
includes an axial position, an element length, and an amplitude of some type.  All 
beamline elements are expected to present this interface.  Two example beamline objects, 
BLQuadrupole and BLCavity are shown to do this in the figure.  They also present the 
interface IEmFields because beamline elements are not useful unless they have 
electromagnetic properties.  Presenting this type of uniform structure for beamline 
elements allows for the straightforward use of optimizers and other mathematical 
programming objects.  For example, an optimizer could be used to tweak parameters of a 
subset of beamline elements until a particular condition is maximized [1].   
In Figure 15, the object BeamLine represents the entire beamline of an accelerator.  
However, it is simply a container of IBLElement interface objects.  Thus, BeamLine contains 
operations for adding and removing IBLElement objects as well as retrieving specific 
elements.  The container should also provide operations for arranging the IBLElement 
objects, since accelerator components have a particular order.  Thus, an appropriate 
container structure for the BeamLine object might be a linked list, or possibly a dynamic 
array. 
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We point out that it is possible to implement the uniform properties of beam line 
elements without interfaces.  The alternative technique involves the use of inheritance 
and polymorphism; this idea is depicted in Figure 16.  In this case, we would implement a 
base class, say BLElement, which contains all attributes and operations common to 
beamline elements.  The specific beamline elements are then derived from the base class, 
redefining their specific behavior and possibly adding attributes and operations particular 
to themselves.  However, the common operations and attributes contained in the base 
class BLElement are the only ones useful to an optimizer.  Requiring the optimizer to 
understand the structure of every possible beamline element is unrealistic and, therefore, 
of questionable design. 

 
Figure 16: Polymorphic implementation of beamline objects 



LA-UR-00-3895 

 25 

3.5 Component Operations 
The operations within a component, that is the activity actually performed, can be 
modeled using UML activity diagrams.  For example, we consider the operation of the 
Integrator component.  The actual implementations of the integrator can vary greatly.  It 
can be as simple as direct numerical integration of the equations of motion, say using 
Runge-Kutta techniques.  Alternatively, it may use modern symplectic-integration 
techniques, or perhaps symplectic maps. 
In Figure 17 we have the UML activity diagram for the integrator component.  The 
integrator employs a split-operator technique to advance the particle states.  Transfer 
maps for the space charge and the machine fields are computed separately, rather than 
computing a single map for the combined fields.  The separate maps are then composed 
to simulate the action of both fields on the particle ensemble.  In this manner, we only 
update either map whenever necessary, instead of continually rebuild the complete map 
whenever one of the update conditions is met. 

In the activity diagram, the transitions on the left side concern the self-field calculations 
while those on the right represent the accelerator field computations.  Both activities may 
be concurrent but are synchronized before the particle states are advances, this condition 
is represented by the thick horizontal bar.  For example, say a new beamline element is 
encountered during the integration yet the particle ensemble does not significantly change 
its configuration.  In that case, the fields of the new element are acquired and a new 
transfer map computed for the element.  However, nothing is done on the left side of the 
diagram, that is, we simply wait at the synchronization bar with the same space-charge 

Figure 17: Integrator component activity diagram 
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transfer map.  The reduced computational load is the motivation for the split operator 
here. 

3.6 Component Object Packaging and Deployment 
Here we briefly outline the topic of packaging and deployment.  We include it because 
this is an important topic concerning upgradability and software distribution.  With a 
well-conceived internal architecture, the task of packaging and deployment is greatly 
simplified.  The components of our system can be packaged and distributed as individual 
software entities. 

A convenient method for packaging software components is the use of dynamic link 
libraries (DLLs).  The notion of a procedure library should be a familiar one, the 
FORTRAN libraries LINPACK, EISPACK, and the IMSL libraries are in wide 
distribution.  Dynamic link libraries differ from static libraries in that they are bound 
(linked) at run time.  If an application is bound at compile time, one large executable is 
the result.  However, dynamic binding allows the application to be subdivided into 
component DLLs.  If a procedure call to an external library is made at run time, the 
operating system locates the DLL, loads it into memory, and then executes the function 
call.  Moreover, DLLs can contain data, that is, they can have a state.  Thus, they 
themselves are concrete software objects. 

Microsoft’s ActiveX technology is a natural extension of dynamic link libraries.  As 
mentioned, they are true software components with a well-defined interface and state.  
Thus, on Windows platforms a convenient way to package the above components is to 
compile them into ActiveX objects and/or controls.  Once they are packaged as ActiveX 
objects, a variety of Rapid Application Development (RAD) tools may be used to create 
the actual beam simulators.  Such tools include Visual Basic, J++ and even web page 
authoring tools such as Visual InterDev and FrontPage, since ActiveX objects are 
recognized by Microsoft’s Internet Explorer.  If the components were implemented in 
Java, the analogous procedure would be to create Enterprise JavaBeans in order to 
package the system as software components.  In that scenario the components would be 
portable across platforms and not restricted to the MS Windows environment.  One may 
assume that eventually the Java virtual machine will be efficient enough to practically 
implement CPU intensive software. 

4 Conclusion 
A particle beam simulator is typically a large, complex software system.  When 
implementing these applications a great deal of time and effort can be saved by 
considering the architecture of the system, before any code is written.  A well conceived 
design lends itself well to future upgrades and enhancements.  This condition is 
extremely import since upgrades, modifications and re-specifications, integration, and 
refactoring (changing the implementation details) are usually where most of the 
development time is spent, not in the original implementation phase. 

The ideas presented here are guidelines for the implementation of robust particle 
simulators.  Accurate particle-simulation techniques have already been developed, are 
described in the literature, and are currently in use for accelerator design [9].  However, 
adapting these codes for new applications, or simply modifying them, can be extremely 
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time consuming.  By employing these proven simulation techniques, along with the 
software techniques covered herein would yield a robust system that could be easily 
adapted to serve a varied compliment of accelerator applications. 
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