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1 Introduction

When simulating particle dynamics it is typically more important to preserve the
symplectic nature of the motion over the overall accuracy of the simulation.
Preserving the symplectic relationship between velocity and position is necessary to
ensure that the motion is physical. A simulation may be numerically accurate, but if
the symplectic condition is violated the results are suspect.

The paper centers on two results: a leapfrog technique for including space
charge in the dynamics calculations which is shown to be both third-order accurate
and symplectic, and methods for adding field imperfections which are also
symplectic with varying integration accuracy. The material is presented in the
context of Lie groups and algebras in order to demonstrate symplecticity of the
methods. Thus, a basic background on Lie methods is included as it applies to beam
dynamics. Also covered are some more general facts on matrix theory and
differential equations that we need for the development. The idea here is that the
material is somewhat self-contained and can be extended at a later date.

We restrict ourselves to linear beam dynamics including space charge effects.
Thus, the usual beam optics matrix technique for “integrating” the dynamics
equations is valid. However, we present the material in the context the symplectic
group Sp(n, R) composed of real nxn symplectic matrices, and its Lie algebra
sp(n, R), also represented by real nxXn matrices.

2 Background

2.1 The Symplectic Group

For simplicity we start with the set R?*? of real, 2x2 matrices. Larger symplectic
groups have similar properties, but are embedded in some R?™*2" where n is an
integer greater than 1. Define the matrix ] € R?*? as
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Then a matrix A € R?*? is symplectic if
ATJA =]. 2)

The set of symplectic matrices in R?*? is denoted Sp(2, R). It is straightforward to
show that the set of symplectic matrices form a group; that is if A and B are both in
Sp(2,R),then so is AB. It can also be shown thatdetA = 1 VA € Sp(2,R). For the
special case of 2X2 matrices the symplectic group is also the special linear group
SI(2,R).

The general n-dimensional symplectic group is denoted Sp(2n,R). For any
A € Sp(2n, R) the relation (2) still holds, however, the symplectic matrix J has the
form

. (0 1
J= (—1 0) )
where I is the nXn identity matrix.

2.2 Lie Groups and Lie Algebras

A Lie group is a differentiable manifold that is also a mathematical group. The
group of symplectic matrices is a Lie group. The group operation (matrix
multiplication) respects the differentiable structure of the group as a set; this is an
important fact when constructing the Lie algebra of a Lie group.

With every Lie group there is an associated Lie algebra, however, multiple Lie
groups may project to the same Lie algebra. Let L be a Lie group in R>™*2™ and 8 be
its Lie algebra. The vector space of £ is identified as the tangent plane of L at the
identity element I € R?™*2%, Specifically, if ®(-) is any smooth curve on L c R?"*2"

such that (I)(O) = I, then (D’(O) A lims—>0 D(s)-1
at I, and thus, in . The algebra of £ is formed by adding the multiplication

operation, given by the matrix commutator [-,-] where [A, B] = AB — BA. The
properties of [-,-] are what differentiate Lie algebras from ordinary algebras.

€ R2™*2™ jg in the tangent plane of L

As shown above we can identify the set of all smooth curves in the neighborhood
of I in L with the set of all elements in the Lie algebra £. Conversely, if A € & C
R2™*2" js constant then

D,(s) 2 %A 4)

is a smooth curve in R#"*2" in L. Itis then easy to show that {®,(s)|s € R} is a one-
parameter subgroup of L where A is the generator of this subgroup and exp(+) is the
matrix exponential (see below). Moreover, ®,(-) c L is the solution to the linear,
first-order differential system

P(s) = ADy(s), ()
Every A in a Lie algebra £ generates a solution ®, to the above differential equation
that is contained in the corresponding Lie group L. The image of exp £ — L for small
s is called the lift of  in L. As mentioned before multiple Lie groups can project to
the same Lie algebra; likewise, a single Lie algebra may lift to multiple Lie groups.



If a Lie group L is defined by some conservation property, then the property
manifests itself in the Lie algebra £ For example, consider the symplectic group
Sp(2n,R). If ®(-)is a curve on Sp(2n, R) passing through the identity ats = 0 and
with A 2 ®'(0) in sp(2n,R) the Lie algebra of Sp(n,R), then the symplectic
condition (2) implies

d /
g[q)T(S)l‘l’(S) =Jls=0 = @7 (0)J®(0) + T (0)J®'(0) =0,

or
ATJ+JA =0. (6)

Since the choice of ®(+) was arbitrary, the above must be a necessary condition for
every A in sp(2n, R), the Lie algebra of Sp(2n, R).

2.3 Matrix Exponential Map

The matrix exponent e is defined by its Taylor series

eAél+A+1A2+LA3+---. 7)
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If ||]| is any matrix norm then it is straightforward to show ||eA|| < ellAll and,
consequently, the series converges in ||-||. Also, if 1 is an eigenvalue of A then e” is
an eigenvalue of eA.

The matrix exponential e? can be computed numerically using formula (7) since
it is convergent for all A such that||A|| < . However, it is best to condition A
before doing so. For example, first find the smallest integer m such that zim Al < 1,

orm = [log||A|| /log 2]. Next we compute the exponential ofzimA using formula (7)

1
to achieve ez™. The formula will converge rapidly and can be further expedited by
2—m

n!

accumulating the term A" by multiplication with ?A. Matrix e is found by

1
. —A .
squaring e2™" m times.

Using the matrix exponential definition it is easy to show that the commutator in
the Lie algebra can be interpreted as “loop deficiencies” in the Lie groups. Explicitly,
for any A,B € £ and small s € R, consider the path in L defined by esAe*Be~5A¢ 5B
starting at the identity. This path moves in the -B direction a distance s then an
equal distance in the -A direction (note that e=A = [¢5A]~1). The loop then winds

back following B and A. After expanding, the terminal location of the path is

s? s?
eShesBe=sAe=sB = |] + A +7A2 + l ll + sB + 732 + - (8)

Thus, the commutator in £ indicates the “energy” obtained from traversing loops in
the group; it is analogous to the outer product of vector mechanics (actually,
Euclidean 3-space with outer product is a Lie algebra).



2.4 Some Mathematical Facts

Here we state some mathematical facts that are needed in the sequel. The
following theorem on the matrix exponential that has particular relevance to
accelerator physics and Lie groups:

Theorem 1 (Campbell-Baker-Hausdorff): Given two matrices A, B € C"**"
sufficiently close to the origin 0, there is a well-defined matrix C € C"**"
such that

eB = eC, 9)
The first few terms of the expansion for C are

C

=A+B+%[A,B] +1—12 [A, [A B]] - [B,[B,A]]) + - (10)

Here we see both that the smooth mapping exp £ — L does not respect the
group operation of vector space £. However, the multiplication on £
provides the first-order degree by which it is violated.

Proof: See [1].

Our next fact concerns the solutions of linear matrix differential equations with
variable coefficients.

Theorem 2 (Peano-Baker): Given the linear differential system

D'(s) = A(s)P(s), (11)
®(0) =1,

where A() is an integrable curve on R™", that is, A(:) € L,(R —» R™™),
then the solution ®(-) can be represented by the series

S s S

d(s)=1+ fA(sl)ds1 + f f A(s;)A(sy)ds,ds, (12)

0
s S1 S2

+fffA(sl)A(sz)A(53) dssds,ds, + -

where the series continues ad infinitum.
Proof: Direct differentiation of the above.

It can be readily shown that the above formula reduces to the usual matrix
exponential when A is a constant.



Another standard result concerning transfer matrices is

Theorem 3 (Semi-group property): Let ®(s, sy) denote the solution to Egs.
(11) starting at some s, = 0 so that ®(s,,s,) = I. Then foranys > s, > 0

D(s,0) = P(s,50)P(sp, 0). (13)
Proof: See [2].

Note that the above relation can be applied multiple times. For example, if we
divide the interval [0, s] into subintervals at locations 0 < sp <s; < <sy <s
then ®(s,0) = ®(s,sy)P(sy, Sy-1) - P(51,50)P(50,0) . In other words, the
mapping sy + s; — P (51, So)P(sy, 0) respects addition on the real line.

The next lemma follows from the Peano-Baker series and a commutator
requirement.

Lemma 4: Let A: R, —» R™* be an integrable matrix function and denote
its (Riemann) integral by X(s), specifically,

S

N(s) 2 fA(a)da . (14)

0

If A(s) and X(s) commute for all s, that is, [A(s),X(s)] = 0 Vs € R,, then
the solution to system (11) is

®(s) = X = gl Ao, (15)

Proof (Sketch): The proof is inductive, applied to each successive term in
(12). First consider

S S S

f [X2(s)]'ds; = f [A(GsDR(s1) + R(sDA(s)] = 2 f f AGs)A(s,)ds,ds,

0 0

where the last equality follows from the condition [A(s), X(s)] = 0 and the
definition of X. From the above we can identify the third term in the Peano-
Baker series (12)

ff A(s))A(sy)ds.ds, = %Nz (s). (16)

Likewise, for the fourth term consider



S N

f[x3(51)]’d51 = I[A(51)N2(s1) + R(s1)A(s1)R(s1) + 8?(s1)A(s1)]dsy,

0 0
N

=3 f A(sp)R2(sp)ds, |

0
s S1 S2

=32 ff f A(s;)A(s;)A(s3)dssds,ds; .

where the second line follows from the commutator relationship and the
third line upon substituting the previous result (16). Analogously each
term in the Peano-Baker series is generated from the previous. The
resulting general formula for the n'" repeated integral is

s  Sn-1
1
f f A(sy) ...A(sp)dsy ...ds, = EN"(S), 17
0 0 '
which, when substituted into (12), yields
1 1
®D(s) =1+ XR(s) +§N2(s)+§x3(s)+--- (18)
= eR() ) .

completing the proof.

Solution (15) is in direct analogue with the scalar case. Note that the condition
[A(s),X(s)] = 0 in the above lemma is very restrictive. The most common
application is when A(s) = k(s)G where k(:) is an integrable function and G is a
constant matrix.

3 Maechanics

Linear beam optics, whether derived from the equations of motion or
Hamiltonian formalism, can be represented as a first-order, matrix-vector
differential equation. Considering only the horizontal phase plane we have

x'(s) = G(s)x(s), (19)
where x 2 (x,x')T is the particle phase vector, G(s) € R?*? describes the dynamics,
and X, is the initial condition of the particle at s = 0. The matrix G is termed the
generator matrix for the dynamics. The solution to (19) is

X(s) = Pg(s)xo, (20)

where ®;(s) 2 e% when G is constant and given by the Peano-Baker series (12)
when not. The matrix @ (s) is referred to as the transfer matrix for system (19).



For beam envelope simulation where ¢ is the symmetric matrix of second order
moments (given by ¢ = (xx7)), the dynamics are

6(s) = Pg(s)a, PL(s), (21)
where o is the initial value. In each case the dynamics are governed by G(-) and,
consequently, ®(+).

In beam optics G is typically one of the following constant matrices:

Go2() o) G2 Q) Gto2( )y o) G2 (s o) @2

where k is the “focusing constant.” The subscripts 0, K, F, and D refer to “drift”,
“kick”, “focus”, and “defocus”, respectively. It can be confirmed that G, Gk, G, Gp
all satisfy the symplectic algebra condition (6). With the addition of matrix

- %)

the set span{G,, Gk, Gg, Gp, E} is complete under the commutator [--] and, thus,
generates the symplectic lie algebra sp(2,R). Since Gg(k) = Gy — k?Gg and
Gp (k) = Gy + k?Gg the set {Gy, Gk, E} is really all that is needed to generate the
algebra. The algebra generator relations are
[Go, GK] = E , [E, Go] = ZGO ) [E, GK] = _ZGK ) (24’)
which yields
[Gr(k), Go] = +k?E, [Gr(k),Gk] = E, [E Gp(k)] = 2Gg(k), (25)
[Gp(k), Go] = —k?E, [Gp(k),Gx] =E, [E Gp(k)] = 2G, (k).

Finally,
[Gr(kp), Gp (kp)] = (kE + KB)E. (26)

Note that equations (24) are all that is necessary to define the algebra sp(2, R), the
rest are listed for the sake of completeness.

Before closing the section we present the generator matrix and transfer matrix
for an RF gap modeled as a thin lens. Since the gap involves a change in beam
energy it cannot be symplectic, however, the same basic relation exists between
generator and transfer matrix. Letn £ f,v,/f1Y1 be the ratio of pre-gap particle
momentum to post-gap particle momentum (f being the normalized particle
velocity and y the relativistic factor). Then the generator matrix Gzr for the gap in

the transverse directions is
0 0
Gpr = (_ p logn n)' (27)

1-n7
where 6 is the transverse phase advance through the gap. The transfer matrix ®4p
for the transverse directions is given by

®,, = e%rrS = @ 2) (28)



For the longitudinal plane replace n by nyZ/y? and replace 8 by —20y2 /y? where
is the average of the pre-gap relativistic factor y, and the post-gap relativistic factor

V1-

4 Numerical Integration

When numerically integrating the dynamics equations often a stepping
procedure is used. To solve the dynamics over a distance L we divide the path
[So, Sy—1] into N subsections of length h,, = s,,,; — s, each (lengths h, need not be
the same size). The objective here is that, typically, the generator matrix G is a
function of path length s. By choosing the interval I,, £ [s,, S,,+1] small enough the
matrix G(s) does not change significantly enough to affect the dynamics and we may
approximate G(s) = G(s,)) + 0(hX) for s € [s,, s,4+1] and some K > 0. We select h,,
small enough to hold the error term O(hX) in the above approximation below a
predetermined error €. The integration then proceeds in steps

Xn+1 = (Dan ’ (29)
where, since G is approximately constant over the interval [s,, S;1+1],
X, 2 x(s,), and @, & enGln) (30)

Thus we have a set of discrete transfer matrices {®,,} which transport the beam in
steps {h, } down the beamline. The accuracy order K is typically determined by the
choice of integration technique. (By order of accuracy we mean the numerical error
is of order O (hX).)

Computing the matrix exponent e™%(n) for each n can be an expensive
procedure. Typically for any simulation the dynamics generator G(s) varies
between one of a handful of known constant matrices {G;, G,, ... } representing
different beamline elements. Thus, the transfer matrices {®,(h), ®,(h),...} are
computed a priori and used in the dynamics calculations as necessary.

4.1 Space Charge

Space charge can be modeled as a defocusing force that is dependent upon the
size and shape of the beam (computing the magnitude of this force is beyond our
scope). Thus, space charge forces can be represented with the generator matrix
Gp[ks-(s)] where kg (*) is the defocusing “constant” originating from the beam’s self
forces. However, the beam typically experiences external forces in addition to space
charge forces such as focusing and defocusing from quadrupole magnets. Moreover,
the effects of space charge are often modeled as kicks with amplitude kg,
computed at each step h,,.

The beam dynamics generator matrix G(s) in the presence of space charge can be
written in the form

G(s) = Gexe(s) + k.gc(s)GK' (31)

where G,,; is the generator matrix for external forces and kg.(-) is the defocusing
function arising from space charge. We can assume that G.,; is one of the known



generator matrices {G4, G,, ... }Jand has the known transfer matrix function ®,,(s)
that is know a priori. The transfer matrix ®.(s) for k2.(s)Gy is trivial since G = 0.
We have

D@ (s) =1+ k()G - (32)
If we approximate the transfer matrix ®,, 2 ®(h,,) for integration step k as
q)TL ~ ¢sc(§n)¢ext(hn)' (33)

where 3, is some s on the interval [s,, s,4,] so that k. 2 k..(5,) is representative of
the average value of k., and h,, is the integration step size. Note that G,,;(5,) is
necessarily representative of G,,:(s) on [s,, s,,1] generating the transfer matrix
®,,.:(h,). Using Campbell-Baker-Hausdorff (10)

q)sc(gn)q)ext(hn) — ehn(EschK‘FGext(5))+r12_%k§c[Gchext(§)]+O(h%). (34)
Thus we see that @, (5,) P, (h,,) is only a first-order accurate approximate for ®;;
that is, the error term is of order h2.

Consider now the approximate

hy _ hy,
q)k ~ q)ext <7> (Dsc(sn)q)ext <7> . (35)

Multiplying the matrix exponents as before we have

h h z .
Gexe(3) Picl5)Pewe () = e ECrCux@)rlD, - 36)

Thus we have gained two orders of accuracy by adding the extra matrix
multiplication.

The above result suggests the use of a leapfrog method when traversing a finite-
length beamline element. This technique reduces the number of matrix
multiplications by combining the multiplications by @,,.(h, /2) at the end of each
integration step resulting in two simultaneous integrations offset by h, /2. Say
h = h,, is a constant for each n. Then two steps n and n + 1 through the element
have the transfer matrix ®(2h) given by

D) = ort (3) @uc G Pose (5) Pose (5) PecE)Pere (3), (37)

Alternatively multiplying by ®,,;(h) and ®.(5,,) throughout the element gives an
integration scheme which is both symplectic and third-order accurate, so long as

h . . . o
one uses ®,,; (E) at the entrance and exit. This scheme is a similar to the
trapezoidal rule for function integration.

4.2 Field Imperfections

Fringe fields are magnetic fields that deviate from the ideal flat top situation.
Instead of falling abruptly to zero, there is a finite region of falloff at the edge of a
magnet. Typically the fringe field is completely contained within a drift space.
However, leakage fields occur when the fringing effect is so dramatic that the “fringe



fields” of one magnet leak into the region of an adjacent magnet. We refer to both
fringe fields and leakage fields as field imperfections.

We have a set of transfer matrices {®,,(s)} for the ideal modeling elements {m}
and we want to include any field imperfections. Denote by Gs(s) the generator
matrix for these field imperfections, specifically, the deviation of real-world fields
from the ideal fields. For example, Gs(s) could represent the fringe fields in a drift
space beyond the hard edge of an ideal magnet. The generator matrix G(s) for the
real-world fields is then given by

G(s) = Gs(s) + G (s), (38)

where G,,(s) is the generator matrix for the ideal beamline element (i.e., the model
element). The prescription that most naturally fits into this representation is

Gs(s) = k3(s)Gx , (39)

where k3(-) is the focusing function for the field deviation. For example, a focusing
quadrupole Q might be modeled with the generator G,(s) = k2(s)Gg + Gp(kp)
inside the flattop region and G, (s) = k2(s)Gg + G, outside.

4.2.1 Third-Order Technique

As with space charge, a simple, third order method for including the field
imperfections is to apply a leapfrog integration technique using the decomposition
of Eq. (38). This is a viable technique due to the simple form of ®s(-), the field
imperfection transfer matrix. The approach requires that we re-compute Gg(5,) =
k2(s,) at each position 5, € [s,, S,+1] and each step length h,, which in and of itself
is not difficult. The difficulty arises in bookkeeping; assigning a ks to an element m
that is generated by an adjacent element, say m+1. For example, consider the
leakage fields in one quadrupole magnet that originate from another quadrupole
magnetic.

4.2.2 First-Order Technique
It would be convenient to treat field imperfections as a separate modeling
element ®5. Define

S N

I(s) 2 f Gs(s1)ds; = f K3(s)ds; G, (40)

then [Gs(s),T5(s)] = 0 for all s, so by Lemma 1

S

D5(s) = exp [f k§(spds; Gk
0
where the second line follows from the idempotency of Gi. By defining

S

ks(s) 2 f K3(sy)ds;, (42)

0

, (41)




The modeling element has the convenient form
Ds5(s) =1+ ks5(s)Gg. (43)

Let us now find an error estimate when modeling the real-world transfer matrix
®(s) by the composite

D (s) = Ps(s) P (). (44)

This is a convenient model since we can simulate the beamline element ®(s) with
the ideal element @,, (s) after which we include the field imperfections using ®4(s).
Assume that the ideal beamline element generator G,, is constant (this is not
unreasonable since the term “ideal” usually refers to exactly this condition). Define
the corrector matrix x(s) as

X(s) 2 ()P (s)P5 7 (s) (45)
Applying Egs. (10), (38), and (43) and expanding everything in site yields
x(s) = (eKS(S)GK+SGm)(e_SGm)(e_KS(S)GK) ) (46)

where the ellipsis refer to terms of third order and higher in s and k5(s). Notice the
similarity between Eq. (8) and the above. The difference |||x(s) — I||| is a measure
of the inaccuracy of the approximation ®5(s)®,,(s). Not only does y(s) contain the
deviation from the true solution ®(s), it can correct this deflection; indeed, from its
definition we have ®(s) = x(s)®s(s)®,,(s). By verifying that [G,,, Gk] satisfies Eq
(6) we see that x(s) is symplectic and, thus, can be safely used as a corrector matrix
for the integration. However, in the case of space charge smooth changes in beam
envelope cannot be accurately reproduced when sks(s) » 0 because the field
imperfections are represented as an impulse.

4.2.3 Example

Let us work out the example of a quadrupole magnet fringe field impinging upon
a drift space, or into another quadrupole. Referring to Egs. (24) and (25) the
examples have the same result. The value of [G,,, Gk] is constant and represents the
direction of the deviation from ideal (in the Lie algebra), which is E. The factor
§5K5(S) is the magnitude of this deviation. If we assume a simple linear profile

k2 (s) with field magnitude B, and fringe field length I, then

(3 o
Bo(1l——=)d for s<l sB S
f 0( l) ¢ 70(2—7) for s <1
ks(s) =1°, =B, (47)
B, 1—z do for s>1 2 for s >1
\ l
0

From here we get



([ s2B, 5 S
szBo( S) ¢ ( l) SZB(())( s) for s <1
2-3)E+-- - 2->
_Je 4 l for s<l _ 0 e 4 l 48
X6) =1 L, " ; o, (48)
e 4 for s>1 e 4 0
<IB for s> 1
0
\ 0 e 4

where we have keep only the first-order error term. We see the correction involves
increasing the magnitude of particle position and decreasing the magnitude of
particle momentum. Thus, the approximation ®g(s)®,,(s) for ®(s) tends to under-
represent the position coordinate and over-represent the momentum coordinate.
We can also see that ®5(s)®,,(s) is, in general, not an overly accurate model for the

true fields. For example, if we add the effects of a fringe field after a drift of length L,
ILB
then the magnitude of the error in ®5(L)®,(L) is e s — 1, which could be quite

large depending upon the leakage I and field strength B,. This is, however, a worst-
case scenario since field imperfections are generally hyper linear meaning there is
less mass under the integral of k5 () for the same cutoff L.

4.2.4 Hybrid Technique

It is possible to improve the third order technique using the principles discussed
above. Previously we approximated the field imperfection matrix ®s(3,) at
integration step n by evaluating the generator matrix Gs(s) = k}(s)Gg at some
Sy € [sp, Spe+1]. Assume the profile k5(-) is known over [s,,, s,,41] we can compute a
theoretically more accurate value using Def. (42) and Eq. (43). We have @5, 21+

fSS"“ k%(0)do Gg. Now the value of the field imperfection matrix is first order

Boy2 2
accurate with error given by e+ —1 = %hrzl + z—gh;‘l + 0(h§) where B, is the
magnitude of the leakage field and h,, is the step length at n. Thus, the computation
of @ ,, is first-order accurate and the integration technique is third-order accurate.

5 Conclusion

We have presented a Lie theoretic, matrix-based approach to numerical
integration of beam optics equations. The approach is rooted in maintaining the
symplectic condition of the simulation while exposing the numerical accuracy of the
underlying technique. A leapfrog integration technique for including space charge
effects in the beam optics simulation is shown to be third-order accurate and
preserves the symplectic requirement of mechanics. An analogous technique can be
used to include field imperfections in the simulation. We explored a first-order
technique that was easier to implement, however, its applicability is limited due to
large errors that can quickly accumulate.
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