A Model for HLA Structure and Development Path

¹ HLA Servers capable of providing Channel Access PV's for model and hardware information not available from Low Level

Level ² Standardized Handling of Input & control from Low Level & Server. Special instances of a Generic Data

³ Ensures single point source of model/configuration. Allows expert interpretation and intervention of events. Enables archiving

archiving ⁴ Event reconstruction, proof-of-principle, algorithm development, post-mortem/fault accounting, run time data ⁵ GUI & algorithm allowing exploratory analysis of data and search for solutions. Modular by function

6 Stendending di Ungeling of Outget to Lovel & Comer, Special instances of a Comeria Data Acquisition Sch

⁶ Standardized Handling of Output to Low Level & Server. Special instances of a Generic Data Acquisition Scheme.

⁷ Flow chart / Template driven, Goal oriented, linear process aimed at completing one task. Encompass all high level processes. May drive more than one expert module

⁸ Fall-back position needed at every stage. Only task-specific modules in standard operational procedure. OPs encouraged to explore expert modules.

Task-Specific Module is Goal Oriented, Can Drive

⁷ Flow chart / Template driven, Goal oriented, linear process aimed at completing single well defined task. May drive more than one expert module

An Example: Measure Beam Width, Perform Twiss Fitting & Propagation, Calculate Matching Solution

More Modular Breakdown of the Expert

Covert to wire size	Output all quantities	Beam profile meas. & fitting	Output all quantities	Convert to Twiss. Set quad scan
Covert to Trans. matrices	Output all quantities	Twiss fitting, & prop.	Output all quantities	Convert to beam env.
Covert to quad K	Output all quantities	Calc. matching solution	Output all quantities	Convert to quad current

HLA Simulation

- With zero error, any algorithm that works on paper will work in the control room.
- Realistic representation of the accelerator in its <u>operational environment</u>.
 - Realistic estimate on signal-to-noise given hardware ripple, beam jitter, noise level in signals etc.
 - Signature of failure modes due to systematic errors
- Should be indistinguishable from the real machine at the CA junction, such that an HLA prototype can be plugged into either.

Generic Data Acquisition Scheme

- Myriad machine data acquisition sequence & logic can be captured in a generic scheme.
 - Actuators (e.g., magnets) varied to put machine in different states
 - Can be multi-dimensional, correlated or uncorrelated
 - Responders (e.g., BPMs) monitored and recorded
 - Can be non-passive and involve activation of devices
 - ✤ The above can be looped & nested
 - Exception monitoring and handling
 - Generic (e.g., stop acquisition upon beam loss)
 - ➢ Task specific
 - Branching of path conditioned on data/exception
 - Exception recorded with data
- Can you think of an exception?
- Usually make up 50% of the work, <u>repeated each time</u> for a new application.
- A generic platform allowing easy assembly of these components into task-specific procedures can save a lot of development resource over long term.
 - ✤ All control variables of interest are CA enabled.
 - ✤ A unified, scalable data structure is established (XML? Database?).