Benchmarking XAL with COSY and IMPACT

Carla Benatti XAL Workshop 12/13/2012

National Science Foundation Michigan State University

C. Benatti, 12/13/2012, Slide 1

Outline

- □ Model Benchmarking Process
- Benchmarked Elements and Examples
- □ Cavity Benchmarking Experience
- □ Some Ongoing Questions

Model Benchmarking Process

Benchmark XAL

- COSY
- IMPACT

• Compare:

- Energy
- 6x6 Transfer Matrix
- Phase Space (xx', yy')
- Twiss Parameters (αβε)
- Phase Advance
- Dispersion
- Chromaticity

ReA.xdxf, main.xal and model.params Files

CSV file created from Excel Lattice Spreadsheet File, or Impact file XDXF file created from CSV file format, two versions currently

System	Subsys.	Туре	FRIB Name	NSCL Name	Length Var	. 1 Var.	2 Var. 3	3 Var. 4	FRIB Pos. XAL P	os.
REA	BTS3	QVE	REA_BTS3:QVE_D0954	LB004TA	0.1	-3.83279	0.03		95.37137	0.2154
REA	BTS3	QHE	REA_BTS3:QHE_D0955	LB004TB	0.1	5.511346	0.03		95.4924	0.336439
REA	BTS3	QVE	REA_BTS3:QVE_D0956	LB004TC	0.1	-3.40761	0.03		95.61344	0.457477

ReA.xdxf

- <node id="REA_BTS3:QVE_D0954" len="0.1" pid="LB004TA" pos="0.2154" s="95.37136608" type="QVE"> <attributes>
 - <magnet dfltMagFld="-3.8327921300" len="0.1" polarity="-1"/> <aperture x="0.03"/>
 - </attributes>
 - <channelsuite name="electrostaticsuite">
 - <channel handle="voltageRead" settable="false" signal="LB004TA"/>
 - <channel handle="voltageSetH" settable="true" signal="LB004TAHR"/>
 - <channel handle="voltageSetV" settable="true" signal="LB004TAVT"/>
 - </channelsuite>
 - </node>
 - <node id="REA_BTS3:QHE_D0955" len="0.1" pid="LB004TB" pos="0.3364385" s="95.49240458" type="QHE"> <attributes>
 - <magnet dfltMagFld="5.5113455500" len="0.1" polarity="1"/> <aperture x="0.03"/> </attributes>
 - <channelsuite name="electrostaticsuite">
 - <channel handle="voltageRead" settable="false" signal="LB004TB"/>
 - <channel handle="voltageSetH" settable="true" signal="LB004TBH"/>
 - <channel handle="voltageSetV" settable="true" signal="LB004TBV"/>
 - </channelsuite>
 - </node>
 - <node id="REA_BTS3:QVE_D0956" len="0.1" pid="LB004TC" pos="0.457477" s="95.61344308" type="QVE"> <attributes>
 - <magnet dfltMagFld="-3.4076076400" len="0.1" polarity="-1"/> <aperture x="0.03"/> </attributes>
- <channelsuite name="electrostaticsuite">
 - <channel handle="voltageRead" settable="false" signal="LB004TC"/><channel handle="voltageSetH" settable="true" signal="LB004TCHR"/>
 - <channel handle="voltageSetV" settable="true" signal="LB004TCVT"/>
 <channel handle="voltageSetV" settable="true" signal="LB004TCVT"/>
 - </channelsuite>
 - </node>

- main.xal
 - <?xml version = '1.0' encoding = 'UTF-8'?> <!DOCTYPE sources SYSTEM "xdxf.dtd">
 - <sources>
 - <deviceMapping_source name="deviceMapping" url="frib.impl"/>
 - <optics_source name="optics" url="REA.xdxf"/>
 - <timing_source name="timing" url="timing_pvs.tim"/>
 - <tablegroup_source name="modelparams" url="REAmodel.params"/> </sources>

model.params

- <record name="HELIUM" mass="3.72597728E9" charge="1"/>
- ...

 - <record name="LBSOURCE TO RFQ" coordinate="x" alpha="0"
 - beta=".5492991115980524E-01" emittance=".188400000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="y" alpha="0"
 - beta=".5492991115980524E-01" emittance=".188400000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="z" alpha="0"
 - steecing name= LBSORCE TO KFQ_coordinate= 2_alpha= 0
 beta=".960940000000001E-01" emittance=".1040647699127937E-10"/>
 ...

 - <record name="LBSOURCE TO RFQ" species="HELIUM" W="4.8047E4" s="0.0"/>

Run XAL Model—MPX, Matlab

%Run the XAL Online Model

```
%Read the accelerator
```

```
accl = XMLDataManager.acceleratorWithPath(acceleratorpath);
```

```
seq0 = accl.getSequence(sequencename);
```

```
%Model and Probe initializations
```

```
model = Scenario.newAndImprovedScenarioFor(seq0);
```

initProbe = ProbeFactory.getEnvelopeProbe(seq0, EnvTrackerAdapt(seq0))

```
model.resetProbe();
```

```
model.setProbe(initProbe);
```

model.setSynchronizationMode(Scenario.SYNC MODE DESIGN);

%Run model

```
model.run();
```

```
probe = model.getProbe();
```

```
traj = probe.getTrajectory();
```


Run COSY Model, and Compare

Outline

- ✓ Model Benchmarking Process
- Benchmarked Elements and Examples
- □ Cavity Benchmarking Experience
- □ Some Ongoing Questions

Benchmarked Elements Summary

Elements:

- Drift
- B-Quad
- E-Quad
- Solenoid
- Dipole
- Sextupole
- Spherical Bend
- Cylindrical Bend
- Cavity
 - •E0TL input (TTF=1)
 - TTF Polynomial input
 - •1Gap
 - •2Gaps

Beamlines:

- FODO Lattice
- LB Line (before RFQ)
- ReA3 Linac
- FRIB Segment1 to Stripper

Benchmark Element Example

Horiz. Dipole

COSY																
Pos[m]] E[MeV] EPSX		В	ETAX		ALPHAX	EPS	SY	B	ΤΑΥ	Al	PHAY				
0	0.04804	7	3		0.75	-().7		5		1	1.3				
0.471238898	0.04804	7	3		1.1526	0.0	29		5	0.372136	671	0.032367				
XAL														1		_
Pos[m]	E[MeV]	EPSX	В	ETAX		ALPHAX	EPS	SY	BE	TAY	Al	PHAY			l Sir	nale
0	0.04804	7	3		0.75	-(D.7		5		1	1.3				.9.0
0.235619449	0.04804	7	3	1.04	1888506	-0.474	47		5	0.536728	884	0.666184			l Dir	ole
0.471238898	0.04804	7	3		1.1526	0.0	29		5	0.372136	671	0.032367			1	
Difference															◀	\leftarrow
Pos[m]	E[MeV]	EPSX	В	ETAX		ALPHAX	EPS	SY	BE	ΤΑΥ	AI	PHAY				-
0		0	0		0		0		0		0	0				
0.471239		0	0	-9.26	5708E-11	9.97E-	-11		0	2.49017E	-12	1.03E-10				
Percent Differe	nce	-							-				1			
Pos[m]	F[MeV]	FPSX	B	FTAX		ΔΙΡΗΔΧ	FPS	SY .	BF	ΤΔΥ	ΔΙ	ΡΗΔΥ				
0	L[INCV]	0		_1 /	803E-14	_3 2F_	.1/	-5 3F-	.14	3 330675	-1/	8 54F-14				
0 471220		0	0	2 O/	0051-14	-J.2L-	07	2 65	14	6 60156E	10	2 25.07				
0.471239		0	0	-0.04	01JL-03	J.44L	.07	-3.0L-	14	0.09130L	-10	3.2L-07				
XAL								Т	rans	form						
0.707106781	0.424264		0		0	0	0.17	5736		1		0	C)	0	0
-1.1785113	0.707107		0		0	0	0.70	7107		0		1	C)	0	0
0	0		1 (0.4712	38898	0		0		0		0	1	L	0	0
0	0		0		1	0		0		0		0	C)	1	0
-0.70710678	-0.17574		0		0	1	0.42	4252		0		0	C)	0	1.999987
0	0		0		0	0		1		0		0	C)	0	0
COSY								X	(AL C	onverted to	COS	Y Coordina	ates			
0.7071068	0.424264		0		0	0	0.08	7869	0.7	07106781	0.42	4264	C)	0	0
-1.178511	0.707107		0		0	0	0.35	3556	-1.1	78511302	0.70	7107	C)	0	0
0	0		1	0.47	12389	0		0		0		0	1	0).471239	0
0	0		0		1	0		0		0		0	C)	1	0
-0.3535557	-0.08787		0		0	1	0.10	6064	-0.	35355567	-0.0	8787	C)	0	1
0	0		0		0	0		1		0		0	C)	0	0
Difference								F	Perce	nt Differen	ce					
1.88135E-08	3.13E-08		0		0	0	2.26	5E-06	2.6	56062E-08	7.38	E-08	C)	0	0
3.02074E-07	1.88E-08		0		0	0	9.15	5E-06	-2.5	56318E-07	2.66	E-08	C)	0	0
0	0		0		2E-09	0		0		0		0	C) 4	4.24E-09	0
0	0		0		0	0		0		0		0	C)	0	0
-2.986E-08	2.17E-09		0		0	0	2.69	9E-06	8.4	44573E-08	-2.5	E-08	C)	0	0
0	0		0		0	0		0		0		0	C)	0	0

0 0 0

0

0

0

0.49999

0.087866

0.353547

0.106062

2.58E-05 2.59E-05

2.54E-05 0

XAL-COSY Benchmarking Elements

Drift												
Differen	ce											
Pos[m]	E[MeV]	E	EPSX	I	BETAX	ALP	HAX	EPSY		BETAY	ALPHAY	
	0	0		0		0	()	C) ()	0
0	.1	0		0		0	()	С) ()	0
Percent	Differenc	е										
	0	0		0	-1.5E-1	.6 -3	.2E-16	5 -5.3	E-16	5 3.33E-16	5 8.54E-1	6
0	.1	0		0	-2.4E-1	.6 -3	.7E-16	5 -3.6	E-16	j ()	0
Bquad												
Differen	ce											
Pos[m]	E[MeV]	E	EPSX	I	BETAX	ALP	HAX	EPSY		BETAY	ALPHAY	
	0	0		0		0	()	С) ()	0
0	.1	0		0	0.00068	2 -0.	00618	3	C	-0.00092	2 0.00989) 4
Percent	Differenc	е										
	0	0		0	-1.5E-1	.6 -3	.2E-16	5 -5.3	E-16	5 3.33E-16	5 8.54E-1	6
0	.1	0	2.96E-2	16	0.00094	3 -0.	00654	-3.6	E-16	-0.00094	4 -0.0089	94
Sextupole	2											
Difference	- -											
Pos[m]	- F[MeV]	FF	PSX	B	FTAX	ALPH		PSY	F	BETAY	ΑΙ ΡΗΑΥ	
()	0	эл (n	L // U.		, , , , , , , , , , , , , , , , , , ,		0	0	(<u></u>))
Ω 1	, I	0	(n			0		n N	0	r r	,)
Dorcont D	lifforonco	0	(0	0	,	0		U	0	Ľ	,
reitent D	vinerence	0		0	1 66 40		NF 1C	F 25	10	2 225 40		-
()	0	(0	-1.5E-16	-3.2	2E-10	-5.3E	-10	3.33E-16	8.54E-16)
0.1	L	0	(υ	-1.5E-16	-3.2	2E-16	-5.3E	-16	3.33E-16	8.54E-16)

Benchmark: •Energy Gain •Phase Space (xx',yy') •Twiss (Transverse) •Rmatrix Elements

Still Need:

- Phase Advance
- •Dispersion
- Chromaticity

Solenoid Only

Twiss parameters

FODO Lattice

Rmat			
COSY			
0.090483	0.566283	0	0
-1.75145	0.090483	0	0
0	0	1.647233	0.748878
0	0	2.287925	1.647233
XAL			
0.094178	0.566917	0	0
-1.74828	0.094178	0	0
0	0	1.645628	0.748914
0	0	2.28076	1.645628
Difference			
0.003695	0.000635	0	0
0.003164	0.003695	0	0
0	0	-0.0016	3.6E-05
0	0	-0.00717	-0.0016
Percent Dif	fference		
3.923672	0.111961	0	0
-0.181	3.923672	0	0
0	0	-0.09752	0.004805
0	0	-0.31416	-0.09752

FODO Lattice XAL-COSY Percent Difference

- Slight growth in the difference of the betatron function
- May be a product of code numerical output precision
- Sufficiently small for simulation benchmarking needs.

ReA3 Layout

Example beamline: ReA3 LB Line

- Generate xal files from impact model files
- Learn that small differences in element positions cause models to not match (errors compound)

Outline

- ✓ Model Benchmarking Process
- ✓ Benchmarked Elements and Examples
- □ Cavity Benchmarking Experience
- □ Some Ongoing Questions

Energy Gain in a 1/4 Wave Resonator

$$\Delta E = \frac{Q}{A} \times Amp \times V_0 \times TTF \times \cos \varphi$$

TTF Curve Polynomial Fit

Change of Basis: Longitudinal Coordinates

Units

$$\operatorname{XAL}\begin{pmatrix} z\\ z' \end{pmatrix}; \operatorname{COSY}\begin{pmatrix} l\\ \underline{AW}\\ \overline{W} \end{pmatrix}; \operatorname{USPAS}\begin{pmatrix} z\\ \underline{Ap}\\ p \end{pmatrix}$$

Conversion

$$\begin{pmatrix} z \\ z' \end{pmatrix} = \begin{pmatrix} \frac{\gamma+1}{\gamma} & \frac{1}{\gamma(\gamma+1)} \\ 0 & \frac{1}{\gamma(\gamma+1)} \end{pmatrix} \begin{pmatrix} l \\ \frac{\Lambda W}{W} \end{pmatrix} \qquad R_{\text{cosy}} = T^{-1} R_{\text{xal}} T$$

$$\begin{pmatrix} z \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{\gamma^2} \end{pmatrix} \begin{pmatrix} z \\ \frac{\Lambda p}{p} \end{pmatrix} \qquad R_{\text{uspas}} = T^{-1} R_{\text{xal}} T$$

$$\begin{pmatrix} z \\ \frac{\Lambda p}{p} \end{pmatrix} = \begin{pmatrix} \frac{\gamma+1}{\gamma} & \frac{1}{\gamma(\gamma+1)} \\ 0 & \frac{\gamma}{(\gamma+1)} \end{pmatrix} \begin{pmatrix} l \\ \frac{\Lambda W}{W} \end{pmatrix} \qquad R_{\text{cosy}} = T^{-1} R_{\text{uspas}} T$$

In XAL code, R56 elements:
$$dz = \frac{L}{(\beta \gamma)^2} \implies dz = L$$

Also, for IMPACT comparison:

$$\beta_{z} [\deg/\%] = \frac{3.6f}{\beta c \gamma (\gamma + 1)} \beta [m/rad]$$

Benchmarking ReA3 Linac

Energy Gain ReA Linac

National Science Foundation Michigan State University

C. Benatti, 12/13/2012, Slide 21

Each Cavity an Individual Sequence

National Science Foundation Michigan State University

C. Benatti, 12/13/2012, Slide 22

Energy Gain Difference

Pc	osition		IMPACT					XAL					IMPACT-XA	AL.			Div by IMP	ACT
																	Betaf	
Ini	nitial F	inal	Betai	Betaf	Ei E	f /	ΔE	Betai	Betaf	Ei I	Ef 🛛	1E	Betai diff	Ei diff 🛛 🛛	Betaf diff	Ef diff	%diff	Ef %diff
CK1	1.31195	1.55195	4.63602	5.03205	0.6	0.600607	0.000607	4.636	4.9508	0.6	0.6	0	2E-05	0	0.08125	0.000607	1.61465	0.101064
CL1	2.98788	3.23838	0.595215	2.37009	0.600608	0.703387	0.102779	0.5952	2.3226	0.6006	0.702525	0.101925	1.5E-05	8E-06	0.04749	0.000862	2.003721	0.12255
CL2	3.67388	3.91555	1.59544	0.097283	0.703388	0.807186	0.103798	1.5954	0.1154	0.7034	0.80715	0.10375	4E-05	-1.2E-05	-0.01812	3.6E-05	-18.623	0.00446
CL3	3.94888	4.18913	0.06171	0.977426	0.807187	0.910822	0.103635	0.0617	0.9439	0.807175	0.91125	0.104075	1.02E-05	1.2E-05	0.033526	-0.00043	3.430029	-0.04699
CL4	4.63488	4.87655	0.968955	0.082104	0.910823	1.01382	0.102997	0.969	0.0934	0.910825	1.0143	0.103475	-4.5E-05	-2E-06	-0.0113	-0.00048	-13.7579	-0.04735
CL5	4.90988	5.15013	0.082172	0.951077	1.01382	1.11562	0.1018	0.0822	0.9326	1.013825	1.116175	0.10235	-2.8E-05	-5E-06	0.018477	-0.00055	1.942745	-0.04975
CL6	5.59588	5.83616	1.83798	1.07195	1.11562	1.21604	0.10042	1.838	1.1287	1.115625	1.216625	0.101	-2E-05	-5E-06	-0.05675	-0.00059	-5.29409	-0.04811
CM1	6.65516	6.95543	0.64811	1.40394	1.216	1.36981	0.15381	0.6481	1.3196	1.216	1.3558	0.1398	1E-05	0	0.08434	0.01401	6.007379	1.02277
CM2	7.46316	7.76405	0.862895	0.355972	1.36978	1.54665	0.17687	0.8629	0.3248	1.369775	1.534425	0.16465	-5E-06	5E-06	0.031172	0.012225	8.756869	0.790418
CM3	7.86116	8.16205	0.30968	0.608375	1.54662	1.74302	0.1964	0.3097	0.5867	1.546625	1.733	0.186375	-2E-05	-5E-06	0.021675	0.01002	3.56277	0.574864
CM4	8.25916	8.55943	0.821177	2.01728	1.74299	1.95484	0.21185	0.8212	1.9354	1.743	1.947125	0.204125	-2.3E-05	-1E-05	0.08188	0.007715	4.058931	0.394661
CM5	9.06716	9.36805	1.9172	0.861468	1.95481	2.17822	0.22341	1.9172	0.8329	1.9548	2.17265	0.21785	0	1E-05	0.028568	0.00557	3.3162	0.255713
CM6	9.46516	9.76605	0.643846	0.36175	2.17819	2.40994	0.23175	0.6438	0.3577	2.1782	2.406075	0.227875	4.6E-05	-1E-05	0.00405	0.003865	1.119558	0.160377
CM7	9.86316	10.1634	0.38057	0.803766	2.40992	2.64737	0.23745	0.3806	0.788	2.409925	2.64485	0.234925	-3E-05	-5E-06	0.015766	0.00252	1.961516	0.095189
CM8	10.6712	10.9715	0.827893	0.4492	2.64733	2.65885	0.01152	0.8279	0.4487	2.647325	2.647325	0	-7E-06	5E-06	0.0005	0.011525	0.111309	0.433458
2	° 665 ∟																	
			MPACI	petax										<u> </u>	o (1100		o (1100	
	2.66			hota-v										CL AV	g %diff	CIM Avg	%diff	
0		/		Dela-X										0.053	8200187	0.4659	31382	
2.	2.655																	
	2.65																	

Cavity Divisions

Split to 20 Gap Divisions

XAL Change Cavity Phase

Conclusions on Cavity Benchmark

- One gap model is valid in regions where TTF curve does not change rapidly
- Two gap model needs to be explored
 - Phase advance
 - Transverse/Longitudinal
- Dividing cavity gaps can reproduce energy gain, but not betaZ (phase?)
- Be aware of code differences, ie rebunching cavities may not match IMPACT

Outline

- ✓ Model Benchmarking Process
- ✓ Benchmarked Elements and Examples
- ✓ Cavity Benchmarking Experience
- □ Some Ongoing Questions

Current Issues (1)

Current Issues (2)

- •Two methods from XAL with Envelope Tracker Probe Trajectory
 - state.twiss();
 - state.phaseCorrelation().twissParameters();
- •In documentation, second method explicitly says:
 - * This method ignores any coupling between phase planes.
 - * TODO Make the method consider the general case of
 - * coupling between phase planes and return the Twiss parameters
 - * as projections that one would observe in experiments.

However, this seems to be the method that agrees with IMPACT

2

Current Issues (3)

- Documentation Improvement
 - Units
 - Definitions (phaseFactor, polarity, etc.)
 - Workarounds
- Vertical Bend Elements
 - Sph/Cyl bend working on a case-by-case basis
- Some functions may not be working (may just be in Matlab)
 - EnvelopeTrajectory.getStates()
 - buildCorrelation()
 - ...
- Solenoid model
 - Is hard-edge a good enough approximation? (May need L_{eff})
- Need to benchmark
 - Offsets (misalignment)
 - Chromaticity
 - ...

Outline

- ✓ Model Benchmarking Process
- ✓ Benchmarked Elements and Examples
- ✓ Cavity Benchmarking Experience
- ✓ Some Ongoing Questions
- Outlook

Outlook

Cavity Benchmark

Cavity Benchmark

%DiffAnaly	tic, XAL w/o	extra factor											
mx21	mx22	mz21 mz22 kt ki		kz	Ek_i	Ek_out	beta_i	beta_out	g_i	g_out	ttf_i	EoTL	
						MeV/u	MeV/u					I	MV
-0.00521	0	-0.005210882	0	-0.00552	-0.00552	0	0	-0.00031	-0.00031	1 -2.6E-06	-2.6E-06	-0.00614	-0.00614
0.160146	0.000461	0.160144905	0.000460676	0.159383	0.159382	0	-0.00092	-0.00031	-0.00076	5 -2.6E-06	1.29E-06	-0.00614	-0.00614
0.125192	0.000169	0.125186787	0.000169427	0.124257	0.124255	-0.00092	-0.00126	-0.00076	-0.00093	3 1.29E-06	-5.1E-06	-0.00348	-0.00348
0.096621	0.000138	0.096615708	0.000137803	0.095547	0.095545	-0.00126	-0.00154	-0.00093	-0.00107	7 -5.1E-06	-7.5E-07	-0.00362	-0.00362
0.078166	-3.3E-05	0.078162211	-3.31607E-05	0.077129	0.077121	-0.00154	-0.00146	-0.00107	-0.00104	4 -7.5E-07	-1.4E-06	-0.0009	-0.0009
0.062938	-5.1E-05	0.062931955	-5.10903E-05	0.061949	0.061944	-0.00146	-0.00137	-0.00104	-0.00099	9 -1.4E-06	4.85E-07	-0.00036	-0.00036
0.05071	-2.1E-05	0.050705722	-2.05392E-05	0.049744	0.049741	-0.00137	-0.00132	-0.00099	-0.00096	6 4.85E-07	-5.2E-06	-0.00087	-0.00088
0.096642	0.000185	0.096634392	0.000185162	0.095491	0.095483	-0.00132	-0.0017	-0.00096	-0.00115	5 -5.2E-06	-6.5E-06	-0.00526	-0.00448
0.101436	0.000487	0.101427581	0.000487198	0.099797	0.099791	-0.0017	-0.00267	-0.00115	-0.00163	3 -6.5E-06	-9.8E-06	-0.01043	-0.00965
0.108308	3.13E-05	0.108295374	3.12857E-05	0.106641	0.106627	-0.00267	-0.00273	-0.00163	-0.00167	7 -9.8E-06	-2.9E-06	-0.00395	-0.00318
0.101578	1.27E-05	0.101562889	1.26924E-05	0.099898	0.099881	-0.00273	-0.00276	-0.00167	-0.00168	3 -2.9E-06	-7.7E-06	-0.00372	-0.00294
0.092772	-0.00011	0.092758038	-0.000109633	0.091202	0.091184	-0.00276	-0.00253	-0.00168	-0.00157	7 -7.7E-06	-4.5E-06	-0.00157	-0.00079
0.080368	-7.3E-05	0.080354508	-7.26285E-05	0.078874	0.078856	-0.00253	-0.00239	-0.00157	-0.00149	9 -4.5E-06	-4.3E-06	-0.00192	-0.00115
0.004039	0	0.004024065	0	0.002538	0.002521	-0.00239	-0.00239	-0.00149	-0.00149	9 -4.3E-06	-4.3E-06	-0.00126	-0.00048
0.004039	0	0.004024065	0	0.002538	0.002521	-0.00239	-0.00239	-0.00149	-0.00149	9 -4.3E-06	-4.3E-06	-0.00126	-0.00048

Ν	mx21/kx mz21/kz	beta_avg gamma_avg	kt*(bgav)^2
1	0.000306 0.000305	-0.00031 -2.6E-06	-0.00613233
2	0.000765 0.000764	-0.08285 -6.7E-07	-0.00612737
3	0.000936 0.000933	-0.06392 -1.9E-06	-0.00346508
4	0.001075 0.001072	-0.04961 -2.9E-06	-0.00360445
5	0.001038 0.001042	-0.03903 -1.1E-06	-0.00087817
6	0.00099 0.000988	-0.03116 -4.6E-07	-0.00034429
7	0.000966 0.000965	-0.02531 -2.4E-06	-0.00085772
8	0.001152 0.001152	-0.05001 -5.8E-06	-0.00446975
9	0.00164 0.001638	-0.05475 -8.2E-06	-0.00964705
10	0.001669 0.00167	-0.05494 -6.4E-06	-0.00315721
11	0.001682 0.001683	-0.05144 -5.3E-06	-0.00292053
12	0.001572 0.001575	-0.04601 -6.1E-06	-0.00077177
13	0.001495 0.0015	-0.04002 -4.4E-06	-0.00111797
14	0.001501 0.001503	-0.00149 -4.3E-06	-0.00045683
15	0.001501 0.001503	-0.00149 -4.3E-06	-0.00045683

$$\beta_{avg} = \sqrt{1 - \frac{1}{\gamma_{avg}}}$$

$$\beta_{avg} \neq \frac{\beta_i + \beta_f}{2}$$

ReA Cavity Model—One Gap

C. Benatti, 12/13/2012, Slide 37

National Science Foundation Michigan State University

NSCI

Distance Mismatch Study

Energy gain, TTF, gradient

Energy gain:
$$\Delta W_p = q \int_{-L/2}^{L/2} E_z(z_p, t) dz_p$$

In a resonator $E_z(r;z,t) = E_z(r;z)\cos(\omega t + \varphi)$. (For simplicity, we assume to be on axis so that r=0, and $E_z(0,z) \equiv E_z(z)$). A particle with velocity βc , which crosses z=0 when t=0, sees a field

 $E_z(z)\cos(\omega z/\beta c + \varphi).$

$$(\beta) = \frac{\int_{-L/2}^{L/2} E_z(z) \cos\left(\frac{\omega z}{\beta c}\right) dz}{\int_{-L/2}^{L/2} E_z(z) dz}$$

Transit time factor:

Avg. accelerating field:

$$E_{a} = \frac{1}{L} \int_{-L/2}^{L/2} E_{z}(z) dz$$

We obtain a simple espression for the energy gain

T

$$\Delta W_p = q E_a LT(\beta) \cos \varphi$$

$T(\beta)$ for 2 gap (π mode)

Solenoid Error Study

- XAL Model running through Matlab
- FRIB Seg1 Linac only
- Introduce Gaussian error to solenoid strength
 - $B_{1,k} = B_{0,k}(1+d_{i,k})$
 - k=solenoids in linac
 - i=run through model
- Look at the relative difference in beta ($\Delta\beta/\beta$)

Solenoid Error Study

Solenoid Error Study

- XAL Model FRIB Seg1 Linac
- N=42 Solenoids
- Introduce Gaussian error to solenoid strength
 - $B_{1,k} = B_{0,k}(1 + d_{i,k})$
 - k=solenoids in linac
 - i=run through model
- Look at sigma($\Delta \sigma_x / \sigma_x$)
- $\Delta \sigma_x / \sigma_x \sim d(\beta/f)(N/2)^{1/2}$

IPAC 2012 Poster

XAL's Online Model at ReA3

Motivation

Congain measurements

with made predictions -'Study problems with A

complicated solution ageor

Tuse an optimized adverto-find a globel adution

"Find beam properties to match observed conditions

Find device settings to affect the been as desired

ic.

C. Benatti, C. Chu, M. Syphers, X. Wu 640 S. Shaw Lane, East Lansing MI 48823 USA

Abstract

The ReA3 facility at the NSCL at MSU has been designed to reaccelerate new isotope beams to 3 MeWu. ReA3 consists of a charge to mass selection section, a normal conducting RFQ, a superconducting lines, and transport beam lines that deliver the beam to the experiments. The beam optics designs were developed using COSY [1] and IMPACT [2]. A code with an online model capable of interacting with the control system, such as XAL [3], developed at SNS, would be ideal for studying this system. New elements have been added to XAI's already extensive list of supported devices in order to model elements unique to the NSCL. The benchmarking process has been completed for establishing the use of XAL's Online Model at the NSCL, and preliminary results from its use at the ReA3 control room have been obtained. The development of applications to fit the needs of the program is ongoing. A summary of the benchmarking process is presented including both transverse and longitudinal studies.

Benchmarking Procedure

A Land

ReA3 Benchmarking Results

Conclusions The benchmarking of XAL has been completed for many elements. Its cavity model can be improved in

100

the future to include 2-gap cavities, but for now the model metches IMPACT very well through RsAS's second cryomodule which is currently being commissioned. XAL's on-line model is ready for use at ReA3, and will soon hopefully become a key tool in its tuning procedure.

The next step is to apply the XAL model to the real mechine. As we gain experience using this online model at ReA3, we will begin working on a cavity phase tuneringtimizer, with model aimutation of cavity settings. In addition to facilitating the commissioning process at ReA3, such techniques may be useful in the future for other ion accelerators such as FRIB.

XAL-IMPACT FRIB Lattice: SEG1-Stripper

Model Benchmarking Process

XDXF File Generation

Excel File created from Lattice Spreadsheet File

Elements from LB Source to First BOB

Spreadsheet To "Component" IN RDB XD XF file generation (Script) XAL XD XF file data (Outional) (Compare XAL with offline model(s) Save XAL model results to "Lattice"	D eci desi	c for gn lattice	model	→	Model result (Cosy, Impa	s ct)	•
XDXF file generation (Script) Live machine data	Spre	eadsheet	RDB		,70 "Lattice" in	RDB	
Live machine data (Ontional) Save XAL model results to "Lattice"	XDXF file generation (Script)	in RDB	XDXF file	e gene	ration		Compare XAL with offline model(s)
(Opuuliai) Run XAL Online Model	Live m data	achine (C	(pptional)	L Online	e Model	Save XA model re to "Latti	L esults ce"

Run offlin

System	Subsys.	Туре	FRIB Name	NSCL Name	Length	Var. 1	Var. 2	Var. 3	Var. 4	FRIB Po	s. XAL Pos.
REA	BTS3	MARK	LBSOURCE_TO_RFQ_START	LBSOURCE_TO_RFQ_START	0					95.15597	0
REA	BTS3	DCH	REA_BTS2:DCH_D0954	LB003DH	0.1					95.37137	0.2154
REA	BTS3	DCV	REA_BTS2:DCV_D0954	LB003DV	0.1					95.37137	0.2154
REA	BTS3	QVE	REA_BTS3:QVE_D0954	LB004TA	0.1	-3.83279	0.03			95.37137	0.2154
REA	BTS3	QHE	REA_BTS3:QHE_D0955	LB004TB	0.1	5.511346	0.03			95.4924	0.336439
REA	BTS3	QVE	REA_BTS3:QVE_D0956	LB004TC	0.1	-3.40761	0.03			95.61344	0.457477
REA	BTS3	DCH	REA_BTS3:DCH_D0956	LB005DH	0.1					95.61344	0.457477
REA	BTS3	DCV	REA_BTS3:DCV_D0956	LB005DV	0.1					95.61344	0.457477
REA	BTS3	MARK	BOB LB	BOB LB	0					95.86079	0.704823

XDXF File

<sequence id="LBSOURCE TO RFQ" len="4.84403392"></sequence>	<channelsuite name="electrostaticsuite"></channelsuite>
<attributes></attributes>	<channel handle="voltageRead" settable="false" signal="LB004TB"></channel>
<sequence predecessors="null"></sequence>	<channel handle="voltageSetH" settable="true" signal="LB004TBH"></channel>
	<channel handle="voltageSetV" settable="true" signal="LB004TBV"></channel>
<node <="" id="LBSOURCE_TO_RFQ_START" len="0" pid="LBSOURCE_TO_RFQ_START" td=""><td><pre>/channelsuite></pre></td></node>	<pre>/channelsuite></pre>
pos="0" s="95.15596608" type="MARK"/>	
<node <="" id="REA_BTS2:DCH_D0954" len="0.1" pid="LB003DH" pos="0.2154" td=""><td><pre><node <="" id="REA_BTS3:QVE_D0956" len="0.1" pid="LB004TC" pos="0.457477" pre=""></node></pre></td></node>	<pre><node <="" id="REA_BTS3:QVE_D0956" len="0.1" pid="LB004TC" pos="0.457477" pre=""></node></pre>
s="95.37136608" type="DCH">	s="95.61344308" type="QVE">
<channelsuite name="magnetsuite"></channelsuite>	<attributes></attributes>
<channel handle="fieldReadH" settable="false" signal="LB003DH"></channel>	<magnet dfltmagfld="-3.4076076400" len="0.1" polarity="-1"></magnet>
	<aperture x="0.03"></aperture>
<node <="" id="REA_BTS2:DCV_D0954" len="0.1" pid="LB003DV" pos="0.2154" td=""><td><channelsuite name="electrostaticsuite"></channelsuite></td></node>	<channelsuite name="electrostaticsuite"></channelsuite>
s="95.37136608" type="DCV">	<channel handle="voltageRead" settable="false" signal="LB004TC"></channel>
<channelsuite name="magnetsuite"></channelsuite>	<channel handle="voltageSetH" settable="true" signal="LB004TCHR"></channel>
<channel handle="fieldReadV" settable="false" signal="LB003DV"></channel>	<channel handle="voltageSetV" settable="true" signal="LB004TCVT"></channel>
<pre><node <="" id="REA_BTS3:QVE_D0954" len="0.1" pid="LB004TA" pos="0.2154" pre=""></node></pre>	<pre><node <="" id="REA_BTS3:DCH_D0956" len="0.1" pid="LB005DH" pos="0.457477" pre=""></node></pre>
s="95.37136608" type="QVE">	s="95.61344308" tvpe="DCH">
<attributes></attributes>	<channelsuite name="magnetsuite"></channelsuite>
<magnet dfltmagfld="-3.8327921300" len="0.1" polarity="-1"></magnet>	<channel handle="fieldReadH" settable="false" signal="LB005DH"></channel>
<aperture x="0.03"></aperture>	<pre><channel handle="fieldSetH" settable="true" signal="LB005DHR"></channel></pre>
<channelsuite name="electrostaticsuite"></channelsuite>	
<pre><channel handle="voltageRead" settable="false" signal="LB004TA"></channel></pre>	<pre><node <="" id="RFA_BTS3:DCV_D0956" len="0.1" pid="LB005DV" pos="0.457477" pre=""></node></pre>
<pre><channel handle="voltageSetH" settable="true" signal="I B004TAHR"></channel></pre>	s="95 61344308" type="DCV">
<pre><channel handle="voltageSetV" settable="true" signal="I B004TAVT"></channel></pre>	<pre><channelsuite name="magnetsuite"></channelsuite></pre>
	<pre><channel handle="fieldRead\/" settable="false" signal="I B005D\/"></channel></pre>
	<pre><channel handle="voltageSetV" settable="true" signal="LB005DVT"></channel></pre>
<pre><node;< pre=""></node;<></pre>	channelsuite>
s="95 49240458" type="OHF">	
	<pre><node <="" id="BOB B" len="0" pid="BOB B" pos="0 7048226" pre="" s="95 86078868"></node></pre>
<pre><magnet dfltmageld="5 5113455500" len="0 1" polarity="1"></magnet></pre>	type="MARK"/s
<aperture x="0.03"/>	
<td></td>	

main.xal and model.params Files

main.xal

```
<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE sources SYSTEM "xdxf.dtd">
<sources>
<deviceMapping_source name="deviceMapping" url="frib.impl"/>
<optics_source name="optics" url="REA.xdxf"/>
<timing_source name="timing" url="timing_pvs.tim"/>
<tablegroup_source name="modelparams" url="REAmodel.params"/>
</sources>
```

model.params

```
<?xml version = '1.0' encoding = 'UTF-8'?>
```

```
•••
```

<record name="HELIUM" mass="3.72597728E9" charge="1"/>

••

• •

<record name="LBSOURCE TO RFQ" coordinate="x" alpha="0" beta=".5492991115980524E-01" emittance=".188400000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="y" alpha="0" beta=".5492991115980524E-01" emittance=".18840000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="z" alpha="0" beta=".5492991115980524E-01" emittance=".18840000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="z" alpha="0" beta=".5492991115980524E-01" emittance=".18840000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="z" alpha="0" beta=".5492991115980524E-01" emittance=".1884000000000E-03"/> <record name="LBSOURCE TO RFQ" coordinate="z" alpha="0" beta=".960940000000001E-01" emittance=".1040647699127937E-10"/>

```
...
```

```
<record name="LBSOURCE TO RFQ" species="HELIUM" W="4.8047E4" s="0.0"/>
```


National Science Foundation Michigan State University Units: mass [eV/c²] alpha [rad] beta [m/rad] emit [π·m·rad] W [eV] (total KE)

Run XAL Model--MPX

💩 MPXMain	(LBSOURCE T	ORFQ) - Untitled.	mpx*								🚳 MPXMain -	- (LBSOL	JRCE TO R	FQ) - Untitled.n	npx*							
File Edit Ac	Edit Accelerator Model Magnet View Window Help												Model I	Magnet View	Window Help							
Probe	Probe Editor	Run Synchronize	Enable PV Loggin	Lattice Tree	•						Probe	Probe Ed	litor	Synchronize	Enable PV Loggi	ng Lattice	Tree					
Accel	Element	S a	lpha-x beta-x	alpha-y	beta-y	alpha-z	beta-z	emit-x	emit-y	emit-z	Accel	4.88	8								Select	
Sequence	LBSOURCE	0.0000 0.00	00 0.0549	0.0000	0.0549	-0.0000	95.1734	942.0000	942.0000	0.0005	Sequence											— •
Lattice	BEGIN_LBS	0.0000 0.00	00 0.0549	0.0000	0.0549	-0.0000	95.1734	942.0000	942.0000	0.0005	Lattice	4.36	6								X	×
Probe		0.0000 0.00	00 0.0549	0.0000	0.0549	-0.0000	95.1734	942.0000	942.0000	0.0005	Probe											
Trajectory	DR1	0.0827 -1.5	056 0.1794	-1.5056	0.1794	33369.5514	105978113	942.0000	942.0000	0.0005	Trajectory	3.86	5								y	y
Result Table	1 DR1y	0.1654 -3.0	111 0.5530	-3.0111	0.5530	66739.1028	423912454	942.0000	942.0000	0.0005	Result Table	1									🗌 Z	🗌 z'
Result Table	2 DEA DICA	0.1654 -3.0	0.5530	-3.0111	0.5530	26026 6225	423912454	942.0000	942.0000	0.0005	Result Table	2 3.33	3			\searrow						_
Plots	DEA DTO2	0.01904 -0.0	941 U.7519 360 1.0014	-1.9410	0.0791	06014 1641	710046402	942.0000	942.0000	0.0005	Plots	-									🔜 Alpha X	🖌 Beta X
11010	REA BTS2	0.2154 -8.3	269 1.0014	-0.4497	0.7400	86914 1641	718946482	942.0000	942.0000	0.0005		2.8									C Cont M	Cirrer V
	REA BTS2	0.2154 -8.3	269 1.0814	-0.4497	0.7400	86914 1641	718946482	942 0000	942 0000	0.0005			. ====								Emit X	Sigma X
	REA BTS3:	0.2404 -13.	4392 1.6157	1.1400	0.7224	97001.6948	895517531	942.0000	942.0000	0.0005		2.29	1								🗆 Ainha Y	Beta Y
	REA_BTS3:.	0.2654 -21.	5848 2.4755	2.4818	0.6302	107089.2254	109145793	942.0000	942.0000	0.0005		1.70										
	DR2	0.2759 -23.	5689 2.9505	2.3623	0.5792	111333.7557	117969344	942.0000	942.0000	0.0005		1.0	° =====								Emit Y	🔄 Sigma Y
	DR2y	0.2864 -25.	5529 3.4672	2.2428	0.5308	115578.2860	127135825	942.0000	942.0000	0.0005		1.20										
	ELEMENT	0.2864 -25.	5529 3.4672	2.2428	0.5308	115578.2860	127135825	942.0000	942.0000	0.0005		1.20	° =				•				🔲 Alpha Z	🔤 Beta Z
	REA_BTS3:.	0.3114 -15.	5874 4.5239	0.5278	0.4633	125665.8167	150296810	942.0000	942.0000	0.0005		0.7										_ e: _ z
	REA_BTS3:	0.3364 -0.7	858 4.9445	-1.0145	0.4752	135753.3473	175394730	942.0000	942.0000	0.0005		0.74	*								Emit 2	Sigma Z
	REA_BTS3:.	0.3614 14.2	596 4.5984	-2.8887	0.5702	145840.8780	202429586	942.0000	942.0000	0.0005		0.2	, 1								RDM X	
	REA_BTS3:.	0.3864 24.8	808 3.5931	-5.7081	0.7796	155928.4086	231401378	942.0000	942.0000	0.0005		0.2	<u> ا</u>									
	DR3	0.3970 23.0	655 3.0887	-6.1612	0.9045	160172.9389	244170805	942.0000	942.0000	0.0005		-0.20									WS X	WSY
	DR3y	0.4075 21.2	502 2.6225	-0.0143	1.0389	164417.4692	257283162	942.0000	942.0000	0.0005		-0.23	° 🕂 👘									_
	DEA DTC2	0.4070 21.2	002 2.0220	-0.0143	1.0309	174604 0009	207203102	942.0000	942.0000	0.0005		-0.81	1								W	
	REA BTS3	0.4525 15.5	56 1.7007	-2.4802	1.5350	184592 5305	203021030	942.0000	942.0000	0.0005		0.0	' <u>+</u>									0.00
	REA BTS3	0.4575 8.63	56 1.2192	-2.4802	1.5260	184592 5305	324297569	942.0000	942.0000	0.0005		-1.30	3	+ + + + +		++++			+++++		Current	⊖ bm.
	REA BTS3:	0.4575 8.63	56 1.2192	-2.4802	1.5260	184592.5305	324297569	942.0000	942.0000	0.0005			-0.007	0.105	0.217	0.329	0.441	0.553	0.665	0.777	Save Data	
	REA BTS3:	0.4825 5.41	77 0.8735	0.5554	1.5749	194680.0611	360710177	942.0000	942.0000	0.0005						s (r	n)				Sure Dula	
	REA_BTS3:	0.5075 3.28	47 0.6595	3.4833	1.4723	204767.5918	399059719	942.0000	942.0000	0.0005					1							
	DR4	0.5936 1.74	60 0.2265	2.7155	0.9387	239498.6774	545910800	942.0000	942.0000	0.0005			H									
	nn.	0.0200 0.00	20 0.0500	4 0 4 7 7	0.022	074000 7000	74/2700404	0.40.0000	0.40.0000	0.0005												
NEW LATTICE:	LBSOURCE TO	RFQ; NEW PROBE: I	by probe editor; NEW	LATTICE: LBSOU	IRCE TO RFQ						NEW LATTICE:	: LBSOUR	CE TO REG); NEW PROBE: b	y probe editor; NEV	V LATTICE: LB:	SOURCE T	O RFQ				

Run XAL Model--Matlab

.

%Run the XAL Online Model
%Read the accelerator
accl = XMLDataManager.acceleratorWithPath(acceleratorpath);
<pre>seq0 = accl.getSequence(sequencename);</pre>
%Model and Probe initializations
<pre>model = Scenario.newAndImprovedScenarioFor(seq0);</pre>
<pre>initProbe = ProbeFactory.getEnvelopeProbe(seq0, EnvTrackerAdapt(seq0));</pre>
<pre>model.resetProbe();</pre>
model.setProbe(initProbe);
<pre>model.setSynchronizationMode(Scenario.SYNC_MODE_DESIGN);</pre>
%Run model
<pre>model.run();</pre>
<pre>probe = model.getProbe();</pre>

traj = probe.getTrajectory();

National Science Foundation Michigan State University

53

	Pos[m]	E[MeV]	PX	PA	EPSX	BETAX	ALPHAX			
	0	0.048047	0	0	0.000188	0.05493	0			
	0	0.048047	0	0	0.000188	0.05493	0			
	0	0.048047	0	0	0.000188	0.05493	0			
	0.0827	0.048047	0	0	0.000188	0.179439	-1.50555			
	0.1654	0.048047	0	0	0.000188	0.552967	-3.01111			
	0.1654	0.048047	0	0	0.000188	0.552967	-3.01111			
	0.1904	0.048047	0	0	0.000188	0.751938	-5.09412			
	0.2154	0.048047	0	0	0.000188	1.081402	-8.32692			
	0.2154	0.048047	0	0	0.000188	1.081402	-8.32692			
	0.2154	0.048047	0	0	0.000188	1.081402	-8.32692			
	0.2404	0.048047	0	0	0.000188	1.615724	-13.4392			
	0.2654	0.048047	0	0	0.000188	2.475507	-21.5848			
	0.275919	0.048047	0	0	0.000188	2.950489	-23.5689			
	0.286439	0.048047	0	0	0.000188	3.467213	-25.5529			
	0.286439	0.048047	0	0	0.000188	3.467213	-25.5529			
 C. Benatti, 12/13/2012, S 										

Run COSY Model

Comparison

National Science Foundation Michigan State University

NSC

C. Benatti, 12/13/2012, Slide 55

TTF Fit for ReA Cavities

RFQ to BTS5

FRIB Seg1 to Stripper

National Michigar

National Science Foundation Michigan State University

C. Benatti, 12/13/2012, Slide 58

Summary

Issues:

- Transverse Twiss parameters
 - Before and after RFQ
 - FRIB Seg1 at quads
- Energy gain b085 cavities
- Sph/Cyl bend new device vs. new type variable added to XAL

Resolved:

- Transfer matrices established
 - Cylindrical bend
 - Spherical bend
- Longitudinal coordinate units
- Rotation matrix b/w COSY, WAL
- •MPX units, factor of 5 in emit.

Bquad

Bquad—Horizont	al										
Difference								Bquad—H	orizontal		
Pos[m] E[MeV] EPSX	BETAX	ALPHAX	EPSY	BETAY	ALPHAY		Rmat			
0	0	0 0	D C) 0	C) (0	Percent Di	fference		
0.1	0	0 0.000682	2 -0.00618	8 0	-0.00092	0.00989	4	0.050921	0.015862	0	0
Percent Difference	e							-0.37987	0.050921	0	0
0	0	0 -1.5E-16	6 -3.2E-16	5 -5.3E-16	3.33E-16	6 8.54E-1	6	0	0	-0.04345	-0.01537
0.1	0 2.96E-	-16 0.000943	3 -0.00654	-3.6E-16	-0.00094	-0.0089	4	0	0	-0.41123	-0.04345
Bquad—Vertical											
Difference								Bouad—Ve	ertical		
Pos[m] E[MeV]	EPSX	BETAX	ALPHAX E	EPSY B	ETAY /	ALPHAY		Rmat			
0	0	0 0	0	0	0	0		Percent Di	fference		
0.1	0 1.02E-1	4 -0.00092	0.011077	0 0	0.000656	-0.00469		-0.04345	-0.01537	0	0
Percent Difference								-0.41123	-0.04345	0	0
0	0	0 -1.5E-16	-3.2E-16	-5.3E-16	3.33E-16	8.54E-16		0	0	0.050921	0.015862
0.1	0 3.4E-1	.5 -0.00082	-0.0033	1.07E-15 (0.001121	-0.00187		0	0	-0.37987	0.050921

