

Physics Improvement at SLAC/FRIB and Potential Challenge

Paul Chu / Carla Benatti

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Physics Improvement Summary

- SLAC version:
 - Use MAD/DiMAD algorithms and in good agreement
 - All transverse (4x4) benchmarked and validated
 - Dipole bend edge effect handled
 - Dispersion, phase advance, chromaticity coded and checked
 - Suitable for light source
 - Should be one algorithm within XAL
- FRIB version
 - New FRIB specific device types added
 - 6x6 matrix benchmarked
- For Chicane Dipoles, SLAC uses a special algorithm to figure out the right fields for each dipole – this is outside simple caget()
 - Dipole edge effect is not handled in an elegant way, i.e. hard coded in SLG package

Potential Challenge [1]

- Multi-charge state modeling
 - Preliminary ideas (Carla)
 - Deal with many particle species » Initial conditions saved in RDB and accessed via Model Service
- Solenoids mix x- and y-planes
- (Mis)Alignment support in XAL
- Multi-particle tracking
 - Model data access API via XAL/Model Server (Paul)
- Better solver
 - Generic algorithm solver collaborating with GO AI Services
- RFQ model

Potential Challenge [2]

- Longitudinal coordinates/conversion among different conventions
- Longitudinal part still need further benchmark
- Better mapping among Java, XML and database
 - New "global" database collaboration try to improve the database for XAL
 - Can/should we initialize XAL directly from RDB?
- Physics applications
 - Cavity tuning
 - Linac energy manager
 - ...
- Turn applications into services and follow Service-Oriented Architecture for better reusability and better software architecture
- Performance
 - Data extraction from accelerator objects

Physics Improvement to XAL

- Multi-charge state capability
- Foil Stripper model
- RFQ element add to XAL

Goal: End-to-end simulation for multiple charge states

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Adding Multicharge State Capability to XAL

- XAL is set up to run one charge state at a time
- Need $\Delta \phi$ for each different charge state at each cavity calculate ToF, Energy Gain, $\Delta \phi$
 - $t_1 = (d/c) \cdot (1/sqrt(1-1/gamma_1^2))$
 - Δφ=ω Δt
 - $\Delta E = (Q/A) \cdot ETL \cdot cos(\phi) \rightarrow \Delta E = (Q_{cs}/A) \cdot ETL \cdot cos(\phi + \Delta \phi)$
- Need to calculate separation of charge states through bend elements
 - Use <x> tracking capability of XAL (7x7 matrix)
 - Edit probe sigma matrix element $\langle z' \rangle$ (σ 67) at each dipole
- Need to combine multiple envelopes into one
 - Add Gaussian distributions with different normalizations, means, and rms sizes

Bend Element Charge State Separation

$$\sigma_1 = R \sigma_0 R^T$$

$$\Rightarrow \langle x \rangle_1 = 1 \cdot \left(\left(x | x \right) \langle x \rangle_0^0 + \left(x | x' \right) \langle x' \rangle_0^0 + \left(x | y' \right) \langle y \rangle_0 + \left(x | y' \right) \langle y' \rangle_0 + \left(x | z \right) \langle z \rangle_0 + \left(x | z' \right) \langle z' \rangle_0 + \left(x | x' \right) \rangle_0 \right)$$

$$(x|z') = \rho(1 - \cos\theta) = \frac{3.3564 p_0}{Q_0 \cdot B} (1 - \cos\theta)$$

$$(z')_0 = \frac{1}{\gamma_0^2} \frac{\Delta B \rho}{B \rho_{ref}} = \frac{1}{\gamma_0^2} \frac{Q_{ref}}{\sqrt{\gamma_{ref}^2 - 1}} \left(\frac{\sqrt{\gamma_0^2 - 1}}{Q_0} - \frac{\sqrt{\gamma_{ref}^2 - 1}}{Q_{ref}} \right)$$

$$(z')_0 = \frac{1}{\gamma_0^2} \frac{\Delta B \rho}{B \rho_{ref}} = \frac{1}{\gamma_0^2} \frac{Q_{ref}}{\sqrt{\gamma_{ref}^2 - 1}} \left(\frac{\sqrt{\gamma_0^2 - 1}}{Q_0} - \frac{\sqrt{\gamma_{ref}^2 - 1}}{Q_{ref}} \right)$$

$$(z')_0 = \frac{1}{\gamma_0^2} \frac{\Delta B \rho}{B \rho_{ref}} = \frac{1}{\gamma_0^2} \frac{Q_{ref}}{\sqrt{\gamma_{ref}^2 - 1}} \left(\frac{\sqrt{\gamma_0^2 - 1}}{Q_0} - \frac{\sqrt{\gamma_{ref}^2 - 1}}{Q_{ref}} \right)$$

$$(z')_0 = \frac{1}{\gamma_0^2} \frac{\Delta B \rho}{B \rho_{ref}} = \frac{1}{\gamma_0^2} \frac{Q_{ref}}{\sqrt{\gamma_{ref}^2 - 1}} \left(\frac{\sqrt{\gamma_0^2 - 1}}{Q_0} - \frac{\sqrt{\gamma_{ref}^2 - 1}}{Q_{ref}} \right)$$

$$(z')_0 = \frac{1}{\gamma_0^2} \frac{\Delta B \rho}{B \rho_{ref}} = \frac{1}{\gamma_0^2} \frac{Q_{ref}}{\sqrt{\gamma_{ref}^2 - 1}} \left(\frac{\sqrt{\gamma_0^2 - 1}}{Q_0} - \frac{\sqrt{\gamma_{ref}^2 - 1}}{Q_{ref}} \right)$$

Adding Gaussian Distributions

FRIB Seg1 to Stripper

Energy Gain dPhi added

No Offset <z'> Added

With Offset <z'> Added

4 Dipoles (5deg each)--Chicane

End-to-End Beam Simulations

Charge Stripping Model in XAL?

For xx' phase space, assume broadening in x' space only

Equivalent to applying delta kick in angle, no position change at stripper foil

Compare to:

Ion Charge Stripping Foil Model for Beam Dynamics Simulation (D. Gorelov and F. Marti)

- Uses SRIM calculation for Energy Loss/Straggling
- IMPACT multiparticle tracking for twiss parameters before/after stripper foil

Phase Space X

C. Benatti, 12/13/2012, Slide 16

Phase Space Y

C. Benatti, 12/13/2012, Slide 17

Phase Space Z

Summary

- Multi-charge state capability
- Foil Stripper model
- RFQ element add to XAL

Goal: End-to-end simulation for multiple charge states

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

National Science Foundation Michigan State University

C. Benatti, 12/13/2012, Slide 20

With Offset <z'> Added

No Offset <z'> Added

With Offset <z'> Added

No Offset <z'> Added

With Offset <z'> Added

No Offset <z'> Added

4 Dipoles (5deg each)--Chicane

