Open XAL Acceleration Model Upgrade Architecture, Verification, Modeling Issues

Christopher K. Allen James Ghawaly

Objectives

- Create generalized (thin-lens) RF acceleration model
 - o Better predict SNS linac (SCL) ?
 - $_{\circ}$ No field restrictions
- Retire the currently used XAL version
 - Repair/replace earlier "quick fixes"
 - Hierarchical acceleration model.

full field = no assumptions

Tasks

- Needed RF cavity software model (hierarchical)
 - Need (major) modification to lattice generator
 to support nested modeling elements
 - Probes must carry their own phase information
 - Algorithms modified to support phase
 - RF cavity container/manager class
 - Cell indices, modes, amplitudes, phases, etc.
 - New RF gap class
- Need tools to compute new spectral quantities
- Architectural support for new data
 - storage, retrieval, encapsulation

generated a cascade of upgrades to Open XAL

Current Status

- All the aforementioned issued have been addressed
- The new RF acceleration model has been analyzed and **documented** extensively
 - C.K. Allen "A Thin-Lens Model for Charged-Particle RF Accelerating Gaps," ORNL Report #TM-2017/395 (July, 2017).
- A tool form computing spectral quantities from fields maps has been written, *TTF Workshop*
 - ^o C.K. Allen, James Ghawaly, with help from A. Shishlo
- Currently verifying and debugging new acceleration model

Software Architecture

RF Cavity Design

RF Gap Design

Spectral Data Locations

Image: Control of the second secon

Verification of Upgrades

- Currently verifying operation of acceleration model
 - particular relevance to the SCL
 - comparing results of online model to analytic model with direct numerical integration using Mathematica

verification – does the model compute what it is supposed to compute?

validation – does the model compute the answer? (reality)

Verification: Do they compute the same thing?

- <u>Computer Model</u>
 - Augmented Panofsky Eq.
 - Discrete, coupled, transcendental equations

$$\phi_0 = \phi_0^- + Im \left[K^- \frac{\partial}{\partial ik} H^- (\phi_0 + \bar{k}^-) \right],$$

$$W_0 = W^- - Im \left[\frac{\partial}{\partial \phi} H^- (\phi_0 + \bar{k}^-) \right],$$

where

$$H^{-}(\phi + ik) \triangleq qV_{0}e^{-i\phi}\mathcal{E}^{-}(ik),$$

$$H^{+}(\phi + ik) \triangleq qV_{0}e^{-i\phi}\mathcal{E}^{+}(ik).$$
Laplace transform spectrum of $E_{z}(z)$
(defines the gap)

- <u>Analytic Model</u>
 - Coupled 1^{st} order ODEs

$$\phi'(z) = k[W(z)],$$

$$W'(z) = qE_z(z)\cos\phi(z),$$

Longitudinal electric field
(defines the gap)

Single-Gap: Test Example Medium-β SCL:Cav01a:Rg01

Single-Gap: Simulation SCL:CavO1a:RgO1 Online Model vs. Analytic – Old and New

Cavity Analysis

Cavity Simulation: SCL:Cav01a $W_m = 185.7 \text{MeV}$ Online Model vs. Analytic – Old and New $\phi_0 = -10^\circ$

Modeling Issues

- Electrical center and length
 - from field map?
 - from geometry?
- Geometric offsets?
- Cavity drive and phase
 - Gap proportions
 - Gap phase w.r.t.?

Single-Gap: Hard-Edge Model

Cavo1a:Rg01Field Map

• Hard-edge model (computer)

$$E_{z}(z) = \begin{cases} \hat{f} & E_{0} & \text{for } z \hat{i} & [z_{1}, z_{2}] \\ \hat{f} & 0 & \text{otherwise} \end{cases}$$

• <u>How do we pick E_0 and length</u> <u> L_{eff} </u>?

-
$$E_{o} = avg field (L_{eff} = L_{cell})$$

- $E_{o} = max field (L_{eff} = V_{o}/E_{max})$

Modeling Issues: Gap Center Offsets

• Comparing value in SNS database (used in Open XAL) and those computed from field map Δz

Summary: Verification and Modeling Issues

- The upgrade appears to be computing what it is supposed to compute (verified)
 - There are still some bugs
- I need to resolve the modeling issues concerning gap offsets and gap drive proportions before I can request pull.

Full-Field, Thin-Lens RF Gap Model

Completing the Thin Lens Representation of RF Gaps with Arbitrary Axial Fields

(Theory Lite)

Story of the Open XAL RF Gap Model

Original motivation was to fix a necessary kluge in the RF gap, and also to provide dynamic phase tracking for beam probes

- The RF cavity effects and particle phases were contained in the RF gap element as "global dynamic variables" (original XAL Online Model did not support phase)
- Began a refactoring of the previous RF gap modeling element
 - Could not follow flow
 - Quantities were undefined, eg., $S' = dS/d\beta$ or dS/dk or $dS(\beta)/dk$ or dS(k)/dk, etc.
- I could not understand or follow the process
 could not interpret the debugging output
- Retreated, then started again from first principles

Start from the Very Very Beginning Thin Lens Theory for Full-Field Gap W(z)W *Full Field* means *S* is not zero ΔW^{+} AW Thin Lens model for RF gap: ΔW^{-} W_i • particle coasts with wave number k_i to gap center z = 0-L/2 +L/2particle arrives at gap center with phase ϕ_0 • phase ϕ_0 is not known a priori ϕ_s $\phi_{s}^{+}(z) = k_{z} + \phi_{0}^{+}$ particle experiences phase jump $\Delta \phi$ and energy gain 0 ΔW $\phi_s(z) = k z + \phi_0$ particle coasts with wave number k_f until next 0 L/2+L/2interaction region $\phi_s(z) = \int^z k_s(s) ds + \phi_0$ This is everything! The rest is analysis.

Review: The Text Book RF Gap Equations

• Synchronous particle kinetic energy W_s through a longitudinal field E_z and resulting energy gain $\Delta W(k)$ from gap

$$W_{s}(z) = W_{i} + \int_{-\infty}^{z} qE_{z}(0,s) \cos[\omega t(s) + \phi_{0}] ds,$$

$$\approx W_{i} + q \cos \phi_{0} \int_{-\infty}^{z} E_{z}(0,s) \cos \bar{k}s ds - q \sin \phi_{0} \int_{-\infty}^{z} E_{z}(0,s) \sin \bar{k}s ds,$$
a special value for $k = (\omega/v)$

$$\Delta W(\bar{k}) \approx qV_{0}T(\bar{k}) \cos \phi_{0} - qV_{0}S(\bar{k}) \sin \phi_{0}.$$
Together "transit time factors" T and S produce the complete Fourier transform of E_{z}
Fourier cosine transform of E_{z}

$$Fourier cosine transform of E_{z}$$

$$F[E_{z}] = V_{0}T(k) - iV_{0}S(k),$$

$$E_{z}(0,z) = \mathcal{F}^{-1}[V_{0}T - iV_{0}S],$$

Review: Phase Jump

Phase jump $\Delta \phi$ derived via a traveling "phase slip" $\delta \phi$ from the synchronous phase

 $\phi_s(z) = \int k_s(s) \, ds + \phi_0$, \leftarrow phase of the synchronous particle

$$\delta\phi_s(z) \approx -\frac{q}{2\nu W} \int_{-\infty}^z E_z(s;t) \, ds \, ,$$
$$= \frac{qk}{2W} \int_{-\infty}^{+\infty} \int_{0}^s E_z(s;t) \, ds dz \, .$$

But wait!

- You cannot integrate through z=0. *k* must be held constant even though it's the variable we are computing.
- Line integrals are actually area integrals. •

Encore – How to Compute the Right Answer

- If you want to compute the *right answer* ...
 - \circ Must compute special *k* at the "gap center " using the special formula

Well, *S* isn't really *S*, but a special *S*, one that is computed for the half field E_z^{-} , we just call it *S*

$$E_{z}^{-}(0,z) = \mathcal{F}^{-1}[V_{0}T(k) - iV_{0}S(k)]$$

- This is completely justifiable because ...
 - The real *S* is zero anyway because all fields are symmetric about *z* = 0.
 - It gives you the right answer

special S

(It's important not to distinguish between *S* and *S*)

Derivations from Thin Lens Model w/ Full Fields

ordinary S

- Energy gain △W the same
 with special S replaced by S
- Phase jump $\Delta \phi$ has two additional terms

$$\Delta \phi^{-} \approx -\frac{K_{i}}{2\pi} \cos \phi_{0} \int_{-\infty}^{+\infty} \int_{-\infty}^{0} \left[sT_{z}(k) \cos ks \cos \bar{k}s + sS_{z}(k) \sin ks \cos \bar{k}s \right] ds dk ,$$

 $\Delta W(\bar{k}) \approx qV_0 T(\bar{k}) \cos \phi_0 - qV_0 S(\bar{k}) \sin \phi_0$

$$+\frac{K_i}{2\pi}\sin\phi_0\int_{-\infty}^{+\infty}\int_{-\infty}^{0} \left[sT_z(k)\cos ks\sin \bar{k}s + sS_z(k)\sin ks\sin \bar{k}s\right]ds\,dk\,,$$

brand new (and resilient)

- Could **prove** these terms not zero
 - Where do they come from?
- I tried to reproduce the magic
 - Without success
- Magic is stronger than math

Putting it together

- Laplace Transform Domain and Extra Terms $\mathcal{E}_q(\sigma) = \frac{1}{\pi i} \int_{\sigma-s} \frac{1}{\sigma-s} \mathcal{E}_z(s) ds$ "quadrature" field transform
 - Extra terms come from a **quadrature** field \mathcal{E}_q (Need a quadrature field E_q conj. to E_z)
 - $_{\circ}$ Contains T_q and S_q conjugate to T_z and S_z
- Hilbert Transform
 - Quadrature T_q and S_q are Hilbert transforms of primary T_z and S_z
 - Spectral pre-envelope E⁻ quadrature sum of spectrum and conjugate spectrum
 - Inverse Laplace transform yields magic field
- Hamiltonian
 - Pre-gap and post-gap Hamiltonians H⁻ and H⁺ ε⁻⁽ⁱ⁾ are pre-spectrum rotated by gap phase φ
 ("action-angle")
 - Dynamics projection of Hamiltonian on imaginary axis

 $\begin{array}{l} H^{-}(\phi,k) \triangleq \mathcal{E}^{-}(ik)e^{-i\phi} \\ H^{+}(\phi,k) \triangleq \mathcal{E}^{+}(ik)e^{-i\phi} \end{array} \end{array}$

$$\mathcal{E}_{q}(\sigma) = \begin{cases} +2\mathcal{E}_{z}(\sigma) & \operatorname{Re} \sigma < 0, & \text{we are} \\ -i\mathcal{H}[\mathcal{E}_{z}(\sigma)] & \operatorname{Re} \sigma = 0, & \text{stuck here} \\ -2\mathcal{E}_{z}(\sigma) & \operatorname{Re} \sigma > 0, & \end{array}$$

 $\mathcal{E}_{z}(\sigma) \triangleq \mathcal{L}_{2}[E_{z}(z)](\sigma)$ Laplace transform of field

$$\mathcal{H}[f(t)] \triangleq PV \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(\tau)}{t-\tau} d\tau \quad \text{Hilbert transform} \\ \text{of function}$$

$$\mathcal{E}_q(ik) = i\mathcal{H}[\mathcal{E}_z(ik)], \qquad \qquad T_q(k) = -\mathcal{H}[S_z(k)], \\ = -\mathcal{H}[S_z(k) + iT_z(k)]. \qquad S_q(k) = +\mathcal{H}[T_z(k)].$$

$$\begin{split} ik) &= \frac{\mathcal{E}_z(ik) - \mathcal{E}_q(ik)}{2} ,\\ &= \frac{T_z(k) - T_q(k)}{2} - i \frac{S_z(k) - S_q(k)}{2} & \text{Special S field} \\ &E_z^-(z) = \begin{cases} E_z(0, z) & z < 0 ,\\ \frac{1}{2}E_z(0, z) & z = 0 ,\\ 0 & z > 0 . \end{cases} \end{split}$$

$$\Delta \phi^{-}(\phi, k) = +K_{i} \frac{d}{dk} \operatorname{Im} H^{-}(\phi, k) ,$$

$$\Delta W^{-}(\phi, k) = -qV_{0} \frac{d}{d\phi} \operatorname{Im} H^{-}(\phi, k) .$$

Summary

• Analysis

- Does it vindicate the magic?
- Does it reveal how the trick is done?
- Magic does not generalize
- Full field model
 - Require both TTFs T_z and S_z
 - Contains field asymmetries
 - Gap "offsets" are represented
- Thin-lens, full-field RF gap model
 - Requires primary TTFs T_z and S_z and derivatives
 - Requires quadrature TTFs T_q and S_q and derivatives
 - Must use "half gap calculation", must use half field, must use special $S = S_q$
 - In principle T_q and S_q can be computed from T_z and S_z via Hilbert transform,
 - Must compute phase jump and energy gain for **both** pre-gap and post-gap region

Transform Properties

- Hilbert Transform
 - Shifts phase of function by 90 degrees, amplitude unchanged – "quadrature"
 - Function and its Hilbert transform are orthogonal
 - Function and its Hilbert transform have same energy
- Pre-Envelope (Analytic Signals)
 - $_{\circ}$ Have spectra of only one sign, + or –
 - (Complex) absolute value is signal envelope

• Eg.
$$f(t) = \cos \omega t \Rightarrow f^{-}(t) = e^{+i\omega t}$$

 $f(t) = \sin \omega t \Rightarrow f^{-}(t) = e^{-i\omega t}$
 $f(t) = m(t) \cos \omega t \Rightarrow f^{-}(t) = m(t)e^{+i\omega t}$

1. "A signal x(t) and its Hilbert transform x'(t) have the same amplitude spectrum". The magnitude of -jsgn(f) is equal to 1 for all frequencies f. Therefore x(t) and x'(t) have the same amplitude spectrum.

That is $X^{(f)} = X(f)$ for all f.

2. "If x'(t) is the Hilbert transform of x(t), then the Hilbert transform of x'(t), is -x(t)". To obtain its Hilbert transform of x(t), x(t) is passed through a LTI system with a transfer function equal to -jsgn(f). A double Hilbert transformation is equivalent to passing x(t) through a cascade of two such devices. The overall transfer function of such a cascade is equal to

$\left[-j\operatorname{sgn}(f)\right]^2 = -1$ for all f

The resulting output is -x(t). That is the Hilbert transform of $x^{(t)}$ is equal to -x(t).

Canonical representation for band pass signal

The Fourier transform of band-pass signal contains a band of frequencies of total extent 2W. The pre-envelope of a narrow band signal x(t) is given by

convenient for modulated signal

Dynamics Equations

- Pre-Envelope of a Function
 - Hilbert transform "completes" a function on the complex plane
 - TTF *T* needs special *S* to complete it
 - ^o Full-field representation: Tz and Sz need Tq and Sq to complete them
- Hamiltonian
 - Spectral pre- and post-envelopes are boundaries of analytic functions on complex plane
 - Complex Hamiltonian equals that boundary rotated by ϕ_0 degrees
 - Dynamics is projection of Hamiltonian onto the imaginary axis

No Magic

- Energy gain ΔW is equal to the potential in electric field
 - $_{\circ}$ with spatial mode k^{-}
 - at time $\omega t = \phi_0$

 $\Delta W(\bar{k}) \approx q V_0 T(\bar{k}) \cos \phi_0 - q V_0 S(\bar{k}) \sin \phi_0.$

maximum potential across gap